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Abstract
Many system applications are still developed using unsafe
languages like C/C++. Memory corruption due to dangling
pointers in these applications can lead to Use-after-Free
(Double-Free) vulnerabilities. Many Use-after-Free detec-
tion schemes and systems have been proposed in the pre-
vious work. These systems either incur high performance
overhead or have limited applicability. This paper proposes
DangSan, a simple and efficient lock-less system to pre-
vent Use-after-Free exploits during runtime. DangSan uses
LLVM compiler instrumentation pass to insert run-time
pointer tracking functions. During run-time, most of the
pointers that point to the object are tracked. These pointer
values are set to invalid addresses when the object is freed.
DangSan is based on efficient metadata management frame-
work, METAlloc [14]. It has moderate performance over-
head. For SPEC2006 benchmarks, it has 43.9% average (ge-
ometric mean) run-time overhead when only heap pointers
are tracked. For widely used web-servers (nginx, httpd
and lighttpd), it has moderate throughput degradation of
12.8% and negligible service latency overhead. Moreover,
DangSan successfully prevented recently discovered Use-
after-Free vulnerabilities in widely used complex software.

1. Introduction
Many system applications are written in unsafe languages
like C/C++. These languages are mostly used to have explicit
control over hardware interfaces for optimal performance.
For example, pointers are used to have explicit control on
memory management. However, incorrect use of explicit
control can lead to security vulnerabilities. Pointers incor-
rect use may lead to memory corruption. Use of dangling
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pointer is one instance of incorrect behaviour.

Dangling pointer is a pointer that points to the freed ob-
ject. Use of dangling pointers i.e. Use-after-Free or Double-
Free affects application integrity, availability and confiden-
tiality [1]. Dangling pointer may write invalid data into
newly allocated memory resulting into data corruption,
thereby affecting integrity. Memory allocators consolidate
two adjacent freed chunks into single big chunk. When Use-
after-Free occurs after chunk consolidation, invalid data can
be used as chunk information. This state results into free-list
corruption that can lead to application crash, thereby affect-
ing availability. Moreover, Use-after-Free before chunk con-
solidation is prone to arbitrary code execution, thereby af-
fecting confidentiality. Segmentation fault due to Use-after-
Free can leak memory addresses, thereby making Address
Space Randomization (ASLR) protection weak [27]. Also,
Use-after-Free vulnerabilities are reported and exploited in
widely used browsers [2, 28]. Most of the highly critical
vulnerabilities can be exploited with low complexity. The
impact includes unauthorized information disclosure/ modi-
fication or service disruption [3].

Common defensive coding practice is to set dangling
pointer to benign value NULL. Manually, this practice is not
scalable in large code base when multiple pointer copies are
present. Same technique can be used dynamically to track all
pointers to the object and set pointer value to NULL when ob-
ject is freed. State-of-the-art mitigation techniques like Dan-
gNull [19], FreeSentry [30] tracks pointer-object relation-
ship dynamically (during run-time). Compiler infrastructure
like CIL [21], LLVM [18] is used to insert run-time pointer
tracking functions. DangNull uses red-black tree data struc-
ture to store and retrieve metadata (i.e. pointer-object rela-
tionship). It provides thread-safety for data structure opera-
tions using mutexes. However, DangNull incurs high aver-
age performance overhead of 80%. Also, it does not track
stack and global pointers. FreeSentry has an average per-
formance overhead of 25%. This performance is reported
using CIL for static instrumentation. Performance num-
bers with LLVM are higher than CIL [6]. FreeSentry uses
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hash-table to store and retrieve metadata. However, thread-
safety for data structure protection is missing in FreeSentry.
Thus, it can break multi-threaded (production) applications.
Also, FreeSentry has not evaluated throughput degradation
of web-servers. Therefore, state-of-the-art mitigation tech-
niques either incur high performance overhead or have lim-
ited applicability.

In dynamic analysis, pointer-object relationship is tracked.
To store and retrieve relationship information, we need
highly efficient and complete shadow memory management
framework. It should have low lookup and memory over-
head. METAlloc [14] is an efficient metadata management
scheme. We first evaluated effectiveness of metadata man-
agement framework, METAlloc. We implemented FreeSen-
try scheme using METAlloc. We found that thread-safety
(i.e. data structure protection) introduces huge performance
overhead of 70%. Applications in production environment
are highly multi-threaded. We have proposed simple and
fast lock-less Use-after-Free detection scheme, called as
DangSan to protect multi-threaded applications efficiently.
DangSan maintains per-Thread and per-Object metadata,
thereby it reduces thread synchronization. We implemented
DangSan using METAlloc. DangSan has moderate run-time
overhead of 43.9% when only heap pointers are tracked.
Moreover, it introduces only 4% more overhead when all
pointers are tracked (Stack, Heap and Global).

2. Background
Dangling pointer is created when the memory object is freed.
Dangling pointer is exploitable only when it is accessed.
Moreover, attacker needs control over the freed memory
where dangling pointer points. Attacker can place desired
data in the controlled freed memory. Based on the context in
which dangling pointer is used, a particular exploit can be
triggered [1, 3]. The time between dangling pointer creation
and use is highly important for the exploit. Longer the time
period, more the chances to exploit [5, 9]. Double free is a
variation of use-after-free. Double free may corrupt mem-
ory allocator chunk information making system vulnerable.
Dangling pointers are highly severe than spatial memory
errors like, buffer overflow. Much of the research has hap-
pened to develop sophisticated buffer overflow mitigation
techniques. Thus, spatial memory error vulnerabilities are
hard to exploit. Due to this, dangling pointer vulnerabilities
have gained popularity among attackers. However, mitiga-
tion techniques for dangling pointers are incomplete or incur
high performance overhead.

Mitigation techniques include static analysis or run-time
analysis. Static analysis on the source code or binary is
hard [12]. It needs precise points-to analysis, type informa-
tion, inter-procedural analysis. Moreover, object allocation,
pointer propagation and object deallocation can occur at dif-

ferent places (functions, modules, threads) in the code. This
further adds complexity to find accurate dangling pointers.
On the other hand, dynamic analysis build pointer-object
relationship during run-time. Pointer-object relationship is
stored in object metadata (shadow object). Although, dy-
namic analysis is more accurate (low false positive and false
negative rate) than static analysis, it incurs high performance
overhead. Mostly, metadata lookups (i.e. finding metadata
given an object or a pointer) are costly.

Dynamic analysis technique requires extra memory. This
memory stores metadata associated with objects. Most of the
schemes require object or pointer to metadata lookup. Meta-
data lookup should efficiently support object range lookups
(i.e. finding metadata given any inbound object address).
DangNull uses variant of red-black tree to store metadata.
Tree node is a shadow object associated with an object.
Every node stores root address and size information. This
bound information is needed for fast range lookups. How-
ever, metadata lookup time is highly variable. That is, it
depends on the height of the shadow tree. On the other hand,
FreeSentry uses label based system [31]. Label based sys-
tem store unique labels in the shadow memory for each fixed
size object field. Object may have multiple fixed size entries
in the label table. Each entry will have same label. During
metadata lookup, unique label is searched in the label table.
This unique label is used as index in the object lookup hash
table. However, FreeSentry need to store more than one ob-
jects per entry in the object lookup table. Therefore, it may
also have variable lookup time for the object metadata.

Furthermore, pointer to object metadata lookup is re-
quired during pointer propagation (i.e. tracking pointer in-
formation in object metadata). DangNull stores incoming
and outgoing links in the shadow node along with bound in-
formation. Incoming link denotes that the object is pointed
by other object and outgoing link denotes that the object is
pointing to other object. DangNull retrieves shadow object
representing pointer address. It checks and modifies outgo-
ing link of this object to point to other shadow object (i.e.
to the object pointed by the pointer). Similarly, it modi-
fies incoming link of the other shadow object. It has variable
metadata retrieval time. FreeSentry uses pointer lookup hash
table to retrieve pointer information. Pointer lookup table
does not require range lookups. Thus, hashtable is a valid
choice. FreeSentry requires huge memory for label table (al-
most equal to process memory), object and pointer lookup
tables. Moreover, shadow memory data structure has to be
thread-safe. Large number of pointer propagations, object
allocations and deallocations in multi-threaded application
will drastically slow down application performance. Thus,
synchronizing operations on data structures increase per-
formance overhead. DangNull protects data structure using
mutexes. However, FreeSentry has not focussed on thread-
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safety. In FreeSentry, object and pointer lookup hash tables
need to be protected. This can be achieved having a coarse-
grain or a fine-grain per-hash table entry lock.

Any dangling pointer detection scheme (dynamic analy-
sis) requires efficient metadata management (i.e. fast meta-
data allocation and retrieval strategy), thread-safety and low
memory overhead. METAlloc [14] is an efficient and practi-
cal memory shadowing framework. It is based on the strat-
egy that every object in the same memory page has same
alignment. Thus, it maintains metadata information per page
instead of per memory object. Given a pointer, it first finds
corresponding page information i.e. metadata base address
and alignment information. Next, it calculates pointer off-
set within the page. The offset and alignment information is
used to find corresponding entry in the metadata area. There-
fore, it has fixed metadata lookup time for any object address
range. Moreover, it provides uniform metadata tracking for
all the objects (Heap, Stack and Global). Most importantly,
it incurs only 1.2% average run-time performance overhead
for SPEC2006 benchmarks. Low performance overhead and
memory optimized design along with easy to use framework
makes METAlloc an ideal choice for implementing dangling
pointer prevention scheme.

We implemented FreeSentry scheme using METAlloc.
METAlloc provides efficient object-to-metadata mapping.
Therefore, we do not need Label table to fetch metadata as-
sociated with the objects. Object metadata stores a pointer to
the pointer list (i.e. list of pointers information that are point-
ing to the object). Thus, we do not need object lookup table.
Fetching a pointer information corresponding to an object
requires fixed retrieval time. Next, we use pointer lookup
hash table similar to FreeSentry. Pointer-to-object metadata
is retrieved using pointer lookup table. Each entry in the
pointer lookup table is a doubly list of pointer information.
This pointer information is also a node in the object meta-
data list. Thus, given a pointer, fetching an object pointer list
is just finding the correct pointer information in the pointer
lookup table. We evaluated this design for SPEC2006 bench-
marks. We performed experiments on 64-bit CentOS Linux
with Intel Xeon CPU E5-2640 v3. We implemented LLVM
compiler pass to insert run-time pointer tracking function.

Figure 1 shows SPEC2006 run-time overhead for FreeSen-
try design using METAlloc. It depicts normalized (with
baseline) numbers with and without thread-safety. With
thread-safety, run-time overhead on an average (geomet-
ric mean) is 69.6%. We used pthread mutexes to pro-
tect object pointer list and pointer lookup table. Without
thread-safety, run-time overhead is just 33.2%. This num-
ber matches with the average FreeSentry performance over-
head when implemented on LLVM [6]. However, all our
bechmarks are SPEC2006 whereas FreeSentry has mix of
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Figure 1. SPEC2006 performance overhead for FreeSentry
scheme using METAlloc. Locking enabled and disabled rep-
resents normalized numbers with and without thread-safety,
respectively.

SPEC2000 and SPEC2006. Moreover, our average num-
ber includes omnetpp run-time which has huge overhead.
That is, omnetpp number further increases average value
compared to FreeSentry. In conclusion, METAlloc seem to
perform better than Label based system used in FreeSentry.
Also, it has low memory overhead. However, introducing
thread-safety dramatically increases performance overhead,
making it impractical in production environment.

3. Overview
Large number of object allocations, deallocations and pointer
propagations pose challenges in developing fast Use-after-
Free detection system. Large scale applications like Web-
Servers, Browsers are multi-threaded applications. Using
dynamic analysis efficiently in multi-threaded application
requires less thread synchronization. Recently proposed
Use-after-Free detection systems introduce huge perfor-
mance overhead or they have ignored thread-safety com-
pletely.

In this paper, we present and evaluate DangSan, a sim-
ple and efficient system to prevent Use-after-Free exploits
during run-time. LLVM compiler instrumentation pass is
used to insert run-time tracking function calls. We present
optimal run-time data structure design for multi-threaded
application. It removes a need for thread synchronization.
We show that this lock-less design can be used practically in
production servers that needs low overhead.

This paper has following contribution,

• We show that thread-safe Use-after-Free schemes in
multi-threaded application can lead to huge run-time
overhead. We implemented FreeSentry scheme using
METAlloc. We evaluated this design with and with-out
thread-safety.
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• We propose DangSan, a novel, simple and efficient lock-
less system to efficiently store and retrieve pointer-object
relationship in Multi-threaded applications.

• We implemented and evaluated DangSan for SPEC2006
CPU benchmarks and widely used Web Servers (httpd,
nginx and, lighttpd).

• We verified DangSan correctness on recently discovered
Use-after-Free (and Double-Free) vulnerabilities.

Section 4 discusses DangSan design. It discusses design
assumptions, criteria and parameters. Performance and cor-
rectness evaluation is presented in Section 6. Related work
is discussed in Section 8. Finally, Section 9 concludes our
contribution.

4. DangSan Design
Data structure thread-safety in multi-threaded application
introduces huge overhead. Efficient design should reduce
concurrent access to data structure. In a simple design, we
just need a list of pointers to the object. When object is freed,
pointers are read from the list and invalidated. This simple
design has following issues in multi-threaded environment.
1) Multiple threads writing to the same object list need to
synchronized (i.e. object to metadata lookup need to be syn-
chronized). 2) When pointer is no longer pointing to the
same object, it should be removed from the list. Pointer to
object metadata lookup is used to remove pointer informa-
tion from the object metadata. Therefore, pointer to object
metadata lookup need to be synchronized. 3) Same pointer
can be inserted multiple times in the object list. DangNull
and FreeSentry maintains pointer-object relationship. Rela-
tionship information does not change when pointer keeps
pointing to the same earlier object. When pointer points to
a new object, old relationship is removed and new relation-
ship is inserted. Therefore, we need thread synchronization
for object to metadata and pointer to metadata access.

Pointer remains in the old object list even after it no
longer points to the object. This can lead to incorrect pointer
invalidation when old object is freed. Pointer value can be
checked to prevent incorrect pointer invalidation. Pointer
is invalidated only when pointer points to any inbound ob-
ject address. The same technique is needed when pointer is
modified in non-instrumented code. We do not need pointer
to object metadata. Also, removal of old pointer-object
relationship adds extra performance overhead. Therefore,
pointer to object lookup can be skipped, thereby removes
need for a thread synchronization. Concurrent access to per
object metadata (list) cannot be skipped. In a simple design,
pointer list per object is required. Pointer list is equivalent to
a log of pointers. Now, reducing concurrent access to pointer
list per object boils down to a well-known problem of con-
current logs. Mostly, concurrent logging is on per-Thread
basis. Concurrent logs are write efficient but with costly

Figure 2. DangSan data structures for two threaded appli-
cation.

reads.

Normally, number of pointer propagations are higher than
the number of object allocations and deallocations. There-
fore, pointer propagation tracking should be efficient. One
approach is to skip pointer-to-object metadata lookup. That
is no need to maintain old pointer-object relationship. This
operation is equivalent to log-write. Motivated by the fact
that log-write is efficient, we designed per-Thread per-object
log data structure to track pointers pointing to the object in
the log. Log read is required when object is freed. The design
is similar to a log-structured file system [25] that maintains
circular buffer to track I/Os. The design rationale behind
DangSan is that the number of pointer registrations (write)
are higher than the number of objects free (reads).

4.1 System Overview
Figure 2 shows DangSan design. Every object metadata has
per-thread log. As we are not maintaining pointer-object re-
lationship, only pointer address is needed and stored in the
log. Object to metadata lookup retrieves corresponding log
for a thread. Pointer tracking function retrieves correspond-
ing log and writes pointer address into it. When object is
freed, all per-Thread logs are retrieved. Pointer addresses
are read from all the logs and invalidated. During invali-
dation, current value of pointer is read and checked to see
whether it still points to the object.

per-Thread Storage. We need efficient retrieval of per-
Thread log for a given object. One approach is to maintain
object lookup table per-Thread. Similar to global shadow
memory technique, it should also support range queries.
Moreover, maintaining per-Thread object lookup table will
incur huge memory overhead. Second approach is shown in
Figure 2, where per-Thread log is maintained in global ob-
ject list. Maintaining global object list (dynamically) needs
thread synchronisation. Another approach is to maintain a
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static array of log pointers per object. Thread specific ID can
be used as index into the static array to retrieve correspond-
ing log. Though this approach uses fast array indexing, it
has high memory requirements. Second approach is mem-
ory efficient but needs concurrent access support. Log re-
moval from dynamic object list is needed only during object
free and not during pointer propagation or object allocation.
Therefore, only concurrent insertions and reads are needed
during pointer propagation. Lock-free insertions and reads
can be achieved through compare and swap (CAS) atomic
instruction [29]. Unique thread IDs can be used to identify
thread log. One can use thread IDs assigned by the run-time
system or maintain own thread IDs. Maintaining own thread
IDs can help in reusing IDs. Reusing thread ID helps in
reusing thread log. Dynamic object list can grow large when
application has too many short lived threads. Thus, reusing
thread log is necessary to reduce list traversal.

Log Overflow. In DangSan, pointer-object relationship is
not maintained. That is, pointer addresses are not removed
from old object logs. Depending upon the number of point-
ers to the object per thread, log overflow has to be handled.
One approach is to reallocate log with larger size. But, real-
located log address can be different than the old log address.
We need deletion operation to modify dynamic list with this
new log address. That is, CAS atomic instruction for thread-
safety can no longer be used easily. Second approach is to
allocate new log for the thread and invalidate old log. Log
invalidation is performed simply by setting thread ID main-
tained in the log to an invalid value. This way, thread can
retrieve only a new log using thread ID. However, this ap-
proach increases length of dynamic list, thereby increases
log retrieval time. Another approach is to introduce second
level indirect log. Concurrent access is required for base
level logs. Figure 2 shows Second level log. It is activated
only when the base level log overflows. After base log over-
flows, each thread will find base log first and then second
level log to store pointer address. Similar to base log, second
level log can overflow. This can be handled easily by reallo-
cating second level log with larger size. This operation does
not require thread synchronization.

We have introduced few terms in our context 1) Unique
pointer: Pointer address is stored only once in the log (i.e.
Pointer has only one entry in the log). 2) Duplicate pointer:
Pointer address is stored more than once in the log (i.e.
Pointer has more than one entry in the log) 3) Stale pointer:
A stored pointer in the log that no longer points to the object.
4) Valid pointer: A stored pointer in the log that points to the
object. Choice of second level data structure also depends
on the number of Unique pointers and Duplicate pointers.
Hashtable can be used when Duplicate pointers are higher
than the Unique pointers. But, HashTable introduces huge

Figure 3. Pointer entry in the log, where Ptr Prefix is a
pointer value from 48-bits to 8-bits and byte is a lowermost
byte of the pointer

memory wastage.

N-Lookbehind. One of the reason for log overflow is
large number of Duplicate pointers. One approach to remove
duplicate pointers is to look-behind in the log for a pointer
i.e. check pointer address against all stored pointers. Check-
ing entire log for Duplicate pointers is a heavy operation.
However, we can lookbehind N last offsets and skip pointer
registration when pointer is within N-Lookbehind offset in
the log. Normally, the same pointer is used to iterate over the
object memory. This iteration occurs within a short period
of time (e.g. in the loop). Depending on the value of N , we
can eliminate large number of duplicate pointers. In normal
scenario, Unique pointers are less than or equal to object
size. When log size grows larger than object size, Duplicate
and/or Stale pointers are higher than Unique pointers. Selec-
tion of N value is critical in removing Duplicate pointers but
by considering performance overhead.

Moreover, N-Lookbehind can be used to increase log
size utilization. On 64-bit architecture, only lower 48-bits
represent user space virtual memory address. That is, up-
per most 16-bits are not used. These two bytes can be used
to store two more pointers i.e. (three pointers per log slot).
Figure 3 shows a technique to make use of two bytes. We
store all three pointers when 40-bit prefix of all pointers is
same. In other word, pointers differing only in lowermost
byte can be stored together in the same log slot. Store 40-bit
pointer prefix in the uppermost 40-bit of the log slot. Next,
three remaining lowermost bytes (byte1, byte2, byte3) of the
log slot are used to store lowermost byte of three pointers.
Therefore, pointers within 256 bytes range occupy the same
slot in log. Here, N-Lookbehind is used to find a log slot
where pointer prefix and a log slot prefix match. Following
steps can be used to insert pointer into the log, 1) Find the
empty slot by matching pointer prefix within N-Lookbehind
entries. Matched slot is empty only when byte2 or byte3
is zero (0x00). 2) When empty slot is found, insert low-
ermost pointer byte at empty byte location. When pointer
lowermost byte is 0x00, swap this value with byte1. That is,
pointer byte 0x00 will always be stored at byte1 location.
This is because, 0x00 value denotes empty byte location. 3)
Skip the registration when Duplicate pointer (i.e. both prefix
and a byte matched) entry is found. 4) When no matching
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log slot is found, insert 48 pointer bits into uppermost 48-bit
of new log slot. Thus, N-Lookbehind strategy helps in com-
paring atmost (N × 3) pointers at the cost of N sequential
memory access. In best case, log utilization increases by the
factor of 3.

Garbage Collection. Another reason for log overflow is
a large number of Stale pointers. Normally, with the time,
old stored pointers tend to become Stale. One approach to re-
move Stale pointers is to treat log as a circular buffer. When
log is about to overflow, iterate from log end to Valid pointer
slot to find Stale pointers. Modify log end value with new
Valid log slot. To determine pointer validity, read pointer
value and check whether it still points to the object. For fast
check, object bound information can be maintained in the
object metadata. We need to grow the log when no Stale
pointer slot is garbage collected. Note, when we store three
pointers per slot, log slot is stale only when all three point-
ers are stale. Due to garbage collection, amount of work is
shifted from object free context to pointer registration con-
text. Total work remains the same with and without garbage
collection. Garbage collection avoids log overflow, thereby
prevents log reallocation cost.

Pointer Liveness. Stale pointers no longer point to the
object. Object in which Stale pointer resides may no longer
be live (i.e. unmapped). Accessing non-live pointer results
into segmentation fault. We access Stale pointers in garbage
collection and object free routines. To prevent invalid access
to Stale pointers, one approach is to introduce new action
for SIGSEGV signal in garbage collection and object free rou-
tines. Ignore SIGSEGV when signal is generated in these rou-
tines. Restore old SIGSEGV signal action at the end of above
mentioned routines. Another problem with Stale pointers is
that the pointer memory location might have been allocated
to a new object. There exist a small window in object free
routine between pointer value check and pointer invalida-
tion operation. In this window, another application thread
can write new value to the pointer which may get invalidated
wrongly in object free routine. To avoid this problem, we use
CAS atomic instruction to perform pointer invalidation only
when pointer value is old.

4.2 Static Instrumentation
Run-time tracking function is instrumented statically using
LLVM. Only pointer propagations are tracked (i.e. run-time
tracking function is inserted before or after pointer assign-
ment instruction). Allocations (malloc, realloc, calloc,
new) and deallocations (delete, free) instructions have
to be intercepted if these routines cannot be hooked dur-
ing run-time. Listing 1 shows instrumented C code. Run-
time tracking function track ptr() is inserted after ob-
ject allocation and pointer propagation code statement (Line
6 and 8). track ptr() first retrieves metadata for an ob-
ject and registers pointer address in the metadata. Similarly,

Listing 1. Static Instrumentation
1i n t
2main ( i n t argc , char ∗ a rgv [ ] )
3{
4char ∗p , ∗q ;
5p = ( char ∗ ) m a l lo c ( 1 0 0 ) ;
6t r a c k p t r (&p , p ) ;
7q = p + 1 0 ;
8t r a c k p t r (&q , p + 10) ) ;
9f r e e ( p ) ;
10n u l l i f y p t r ( p ) ;
11re turn 0 ;
12}

nullify ptr() is inserted after object deallocation code
statement (Line 10). It retrieves object metadata and inval-
idates all stored pointer by setting pointer to benign value
NULL.

We are only interested in pointer assignments.

store rhs, lhs

We track only those store instructions where rhs is of pointer
type. We pass both rhs and lhs as arguments to the run-time
function. Stack objects are frequently created and destroyed.
Benefit of tracking stack object compared to its performance
overhead is very low. Similarly, global objects are destroyed
(freed) only when application exit. Therefore, we conserva-
tively filter out stores when rhs is a stack or global object.
Moreover, incorrectly instrumented stack or global objects
are skipped during run-time. Also, We skip store instru-
mentation when rhs is a function pointer or a constant null
pointer. When old pointer value is needed in tracking func-
tion, insert run-time tracking function before store instruc-
tion.

4.3 Parameters Selection
Performance of DangSan depends on the following three pa-
rameters. 1) N-Lookbehind: Increasing the value of N de-
creases the number of Duplicate pointers. It increases the
chance of placing a pointer at already filled log slot. That
is, it increases memory utilization of the log. However, in-
creasing the value of N introduces cost of reading sequen-
tial memory. Distribution of pointer patterns in the log is
application specific. Thus, choice of selecting value N de-
pends on the application. 2) Log Size: Increasing the log size
decreases the number of log reallocations. However, it in-
creases memory wastage. Selection of baselog size (default
log size for each thread) and reallocation strategy is critical
in maintaining balance between performance overhead and
memory wastage. One reallocation strategy is to increase
log size additively. This will reduce memory wastage but
may need large number of reallocations. Another approach
is to increase log size exponentially. This require logarithmic
steps to reach maximum needed memory for an object. We
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perform log resize operation only on the second level log.
3) Thread-Specific operations: Thread ID is maintained in
thread-specific storage. Also, every log stores thread ID to
identify thread-specific log. Maintaining and using thread-
specific storage introduces extra memory access and com-
putational checks. These extra performance overhead can be
avoided for single threaded applications. One approach is to
give compile time option to select the required variant (i.e.
single threaded or multi-threaded). Another approach is to
maintain thread ID in a register instead of thread-specific
storage. Empirically for SPEC2006 benchmarks, N = 3 and
baselog size = 8 (number of pointers) with exponential log
resize gives better performance.

5. Implementation
We implemented DangSan on linux with METAlloc (meta-
data management) and tcmalloc [13] (custom memory
allocator). Static instrumentation is built using LLVM 3.8.
We do not instrument (malloc, calloc, realloc, new) and deal-
location (free, delete) function calls. METAlloc provides a
way to insert custom hook before and/or after allocation
(deallocation) functions. We instrument only pointer store
instruction. Run-time tracking functionality is provided in a
static library.

Application Compatibility. We found that following
cases can break application compatibility. 1) Pointer sub-
traction: Subtracting two dangling pointers pointing to the
same object is a valid code statement. It can break due to
DangSan. Our system sets pointer value to NULL when ob-
ject is freed. Therefore, subtracting two dangling pointers
result into 0 (i.e. incorrect value). To solve this problem,
we invalidate pointer by setting the most significant bit of
pointer value to 1. On Linux 64-bit, this invalid pointer value
points into kernel address space. 2) Off-by-One byte: Some
valid pointers can point out-of-bound by one byte. For ex-
ample, STL vector has three fields, start, next and end.
start points to start of the array memory. next points to
next empty array location. end points to end of the array
memory. next and end can point out-of-bound by one byte.
Therefore, these pointers will get registered for wrong ob-
ject. When wrong object is freed, next and end pointers will
get invalidated. To solve this problem, we increase object al-
location size by one. 3) GCC issue: We found one weird
pointer usage in SPEC2006 gcc. gcc allocates a memory
and stores allocated address minus some constant value into
the pointer (i.e. no root address is stored). Registration of
this pointer happens for wrong object. This pointer usage is
wrong. Thus, we handled this issue as a special case during
static instrumentation. For GEP LLVM instruction, when in-
dices operand is negative constant or SUB LLVM instruction,
we take root address of the object.

Benchmarks
Normalized
with Baseline

Normalized
with SafeStack

Heap
Pointers

All
Pointers

Heap
Pointers

All
Pointers

bzip2 1.01 1.01 1.01 0.99
gcc 1.42 1.59 1.33 1.48
milc 1.17 1.39 1.06 1.26
gobmk 1.27 1.29 1.28 1.30
hmmer 1.01 1.01 1.00 1.00
sjeng 1.41 1.42 1.33 1.34
libquantum 1.41 1.23 1.02 0.88
h264ref 1.02 1.02 1.00 1.01
lbm 1.11 1.08 1.03 1.00
sphinx3 1.02 1.02 1.02 1.02
perlbench 4.49 4.87 4.05 4.40
namd 0.99 0.99 1.00 0.99
dealII 1.60 1.60 1.59 1.59
omnetpp 6.40 6.89 5.35 5.76
astar 2.21 2.24 2.14 2.17
xalancbmk 1.88 2.08 1.78 1.98
GEOMEAN 1.53 1.57 1.44 1.48

Table 1. SPEC2006 run-time overhead normalized with
baseline and baseline-safestack. DangSan has 53% run-time
overhead compared to baseline numbers when only heap
pointers are tracked, whereas 43% compared to baseline-
safestack. It has only 4% more degradation when all pointers
(Stack, Heap and Global) are tracked compared to when only
heap pointers are tracked.

6. Evaluation
We evaluated DangSan in terms of performance overhead
and effectiveness. We used CPU-intensive SPEC2006 per-
formance benchmarks. For baseline configuration, we com-
piled benchmarks with clang/LLVM 3.8.0. Moreover, we
took numbers with one more baseline configuration (baseline-
safestack) with SafeStack option enabled. METAlloc han-
dles stack objects similar to SafeStack. However, DangSan
do not track stack objects. Therefore, we compare DangSan
with baseline-safestack to remove run-time overhead intro-
duced by stack objects handling. Both baseline configura-
tions use unmodified tcmalloc 4.2.6 [13] as a custom
memory allocator. For DangSan, we compiled applications
with our extra LLVM transformation pass to instrument the
code. We linked DangSan run-time library statically with
the application. We used custom inliner LLVM pass to in-
line most of the our run-time tracking functions. For all
configurations, compiler optimization is set to -O3. We ran
benchmarks on 64-bit CentOS Linux with Intel Xeon CPU
E5-2640 v3. We kept value of N = 3, baselog size = 8
(number of pointers) with exponential log resize strategy.

Master Thesis Report 7 2016/9/19



  0

  10,000

  20,000

  30,000

  40,000

  50,000

Nginx httpd lighttpd

R
eq

u
es

ts
 p

er
 S

ec
 (

#
)

Baseline
Baseline−SafeStack
DangSan

Figure 4. Web servers throughput degradation when com-
piled with DangSan. On an average throughput degrada-
tion is 12.8% (compared to baseline-safestack). Negligible
degradation in service latency.

6.1 Performance Analysis
Table 1 depicts run-time overhead of SPEC2006 bench-
marks. Benchmark run-times are normalized with baseline
and baseline-safestack. Stack pointers are short lived. That
is, attacker has a very short time to exploit vulnerability.
Use-after-Free exploits using stack dangling pointers are
very rare. Performance overhead of tracking stack point-
ers is very high compared to its benefit. Therefore, we per-
formed experiments for tracking all pointers (Stack, Heap
and Global) and only heap pointers. Our static instrumenta-
tion has conservative approach. We end up instrumenting ev-
ery pointer store instruction. We skip registration for invalid
pointers and objects during run-time. This reduces large
number of false negatives. DangSan has average perfor-
mance degradation (geomean) of 53% when only heap point-
ers are tracked. Moreover, it has only 4% more (compared
to only heap pointers tracking) overhead when all pointers
are tracked. SafeStack has low performance degradation of
0.1% [17]. Compared to baseline-safestack, DangSan has
average performance degradation of 44% when only heap
pointers are tracked. Similar to baseline, it has only 4%
more (compared to only heap pointers tracking) overhead
when all pointers are tracked. omnetpp and perlbench

have high performance degradation of 6x and 4x times, re-
spectively. State-of-the-art Use-after-Free detection schemes
have not included either omnetpp or perlbench overhead.
Therefore, we cannot directly compare our average perfor-
mance overhead with other recent schemes. When omnetpp

is excluded, average performance overhead is 42% (nor-
malized with baseline) and 39% (normalized with baseline-
safestack) when all pointers are tracked.

Moreover, we evaluated DangSan on widely used web
servers like nginx, httpd and lighttpd. We measured

service latency (runtime) and throughput (Number of re-
quests per sec) degradation. To measure service latency, we
downloaded 2GB file from server to client on localhost.
We took average of 11 runs. DangSan has shown negligi-
ble service latency degradation. To measure throughput, we
used ApacheBench. We triggered 25000 requests for static
index page using 10 concurrent requests. Figure 4 shows
throughput degradation compared to baseline and baseline-
safestack. lighttpd has low throughput degradation of
6.5%, whereas nginx and httpd has moderate degrada-
tion of 18.2% and 17.7%, respectively. On an average (ge-
omean), Web Servers have 12.8% throughput degradation
compared to baseline-safestack.

Furthermore, we collected run-time statistics to under-
stand performance degradation. For this, we instrumented
DangSan run-time library functions. Table 2 depict runtime
statistics for SPEC2006 benchmarks compiled with Dan-
gSan. Column 2 (Number of tracking calls inserted) rep-
resents a number of store instructions instrumented during
static instrumentation phase. We have conservative static
instrumentation pass. Therefore, we may end up instrument-
ing more than required. gcc and xalancbmk benchmark
have almost 28K instrumented store instructions. Num-
ber of instrumented store instructions represent the num-
ber of pointer assignments found statically in the appli-
cation. Column 3 (Pointer Registrations) denotes a num-
ber of times run-time pointer tracking function is called.
gcc and xalancbmk have more number of instrumented
stores than perlbench and omnetpp. However, the num-
ber of run-time pointer tracking function calls are less. This
is because same instrumented tracking function is called
many times. It can happen when we instrument frequently
executing application functions or loops. This information
can be used to perform DangSan optimizations. Column 6
represents number of allocated objects that are freed. Col-
umn 7 shows the number of times log overflow occurred.
Column 4 shows percentage of pointer registrations that
are for Duplicate pointers. For lbm benchmark, almost all
pointer registrations are duplicates. For sjeng benchmark,
pointer registrations are high with zero duplicates. It has
only 5 allocated objects and no log overflow. It can hap-
pen when pointer registration is called for a large number
of invalid objects (Stack or Global) or pointers. perlbench
and omnetpp have large number of object allocations and
deallocations. Therefore, performance overhead for these
benchmarks could be because of object allocations/deallo-
cations. We initialize object metadata in allocation function
and invalidate pointers in deallocation function. However,
dealII and xalancbmk benchmark have more number of
object allocations and deallocations than perlbench. Thus,
performance overhead in perlbench seems to come from
a large number pointer tracking function calls. As discussed
earlier, these calls are from frequently executed application
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Benchmarks Number of tracking
calls inserted

Pointer
Registrations

Duplicate
Pointers (%)

Objects
Allocated

Objects
Free (%)

Log
Overflows

bzip2 30 766K 50.5 28 85.7 0
gcc 28494 609915K 81.7 1845K 99.0 8829K
milc 100 2329921K 29.7 66K 99.2 82320K
gobmk 333 1837036K 1.3 133K 99.9 5931K
hmmer 487 2403K 22.1 1394K 100.0 8K
sjeng 14 271153K 0.0 5 20.0 0
libquantum 19 130 49.2 149 100.0 0
h264ref 426 783K 15.0 38K 99.9 44K
lbm 14 6K 99.9 4 100.0 0
sphinx3 433 312775K 36.6 14225K 98.5 16242K
perlbench 8177 21572911K 92.9 53673K 96.8 113978K
namd 60 61K 46.6 1K 99.8 0
dealII 6426 78545K 40.4 151258K 100.00 306K
omnetpp 6907 16653803K 10.8 267169K 99.9 226082K
astar 97 675195K 6.5 3683K 100.0 18641K
xalancbmk 27839 2917543K 36.5 135156K 100.0 32602K

Table 2. Run-time statistics for the SPEC2006 benchmarks

functions or loops. Therefore, advanced static instrumenta-
tion is required to avoid instrumentation for invalid store
instructions.

Pointer Patterns. We do not remove pointer registration
from old objects metadata. Therefore, object log has large
number of Duplicate and Stale pointers. We studied pointer
pattern distribution (the number of Duplicate, Unique and
Stale pointers) in the log to fine-tune DangSan parameters.

Figure 5 shows pointer pattern distribution when a baselog
overflow. We collected pointer pattern for first 1000 objects
that have overflown. The graph is plotted with increasing
object size. Moreover, we collected statistics for bench-
marks that incur huge overhead. Therefore, we chose two
C benchmarks (gcc and perlbench) and two C++ bench-
marks (astar and xalancbmk). We set baselog size to a
very high value, 8K (number of pointers). Setting baselog
size to a high value makes pattern clearly visible. We used
N-lookbehind value as 4. In Figure 5, red, green and blue
area represents Valid, Duplicate and Unique pointers, re-
spectively. All four benchmarks have large number of Du-
plicate pointers for any object size. Even after setting N-
Lookbehind value to 4, Duplicate pointers count is very
high. Increasing value of N may decrease Duplicate pointers
count but it has to trade-off with performance degradation.
Furthermore, Unique pointers count increases with object
size for all the four benchmarks. Therefore, default baselog
size should be proportional to the object size. However, it
may introduce huge memory overhead. Next, the sum of
Duplicate and Unique pointers represent the total number of
pointers in the log. We store at max three pointers per log
slot. Therefore, the total number of pointers per log can be

at max 8K (logsize) × 3 = 24K. For all the four bench-
marks, on an average the total pointers count is above 11000.
In gcc, total pointers count reaches 23K for the object size
512. That is, three times improvement in the memory uti-
lization. Also, Valid pointers count is very low for all the
four benchmarks. Note, Valid pointers count is inflated be-
cause pointers that are Duplicate and Valid are counted more
than once. Valid pointers count is very low even after count-
ing Duplicate and Valid pointers more than once. Therefore,
we need garbage collection of Stale pointers to free the log
space.

Furthermore, some pointers point to the same object but
at different offset. These duplicate pointers may escape N-
Lookbehind strategy. We introduced one more strategy to
remove these duplicate pointers. We compare old pointer
value to the new object address range. When pointer points
to the same object, we skip pointer registration. This Dupli-
cate pointers removal technique not only helps to remove
Duplicate pointers within a thread but also across threads.
This technique removed 20% to 25% Duplicate pointers
for SPEC2006 benchmarks. For this technique, we need
old pointer value in run-time tracking function. We slightly
changed our static instrumentation pass. We insert run-time
tracking function before store instruction instead of after
store instruction. In run-time tracking function, we read old
pointer value and check whether it still points to the same
object. For fast check, we store object bound information
in the object metadata. We store lowermost 32-bits of ob-
ject root address and object size together in the 64-bit object
metadata field. Therefore, METAlloc stores and retrieves 16
bytes metadata, 8 bytes for a pointer to a per-Thread log list
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Figure 5. Pointer registration pattern for the benchmarks that incur huge overhead. First 1000 baselog overflow numbers are
collected. N-Lookbehind value is 4. Size of the baselog is kept very high to clearly visualize pattern difference.

and 8 bytes for object information.

6.2 Correctness
We evaluated DangSan correctness on publicly available ex-
ploits. We chose following Use-after-Free (Double free) vul-
nerabilities.

CVE-2010-2939 [4]: This is a double free vulnerabil-
ity in OpenSSL client version OpenSSL1.0.0a and function
ssl3 get key exchange. It is a highly critical vulnerabil-
ity that results into denial of service or possible arbitrary
code execution. We used exploit with the baseline config-
uration. It resulted into memory corruption error messages.
Furthermore, we compiled OpenSSL1.0.0a with DangSan.
We tried to exploit the compiled OpenSSL client. However,
our system prevented double free. It aborted OpenSSL client
due to invalid memory access.

src/tcmalloc.cc:290] Attempt to free invalid

pointer 0x80000000022ba510

./runclient: line 9: 20200 Aborted

Above message indicates that our system had invalidated
pointer by setting uppermost bit to 1 when the object was
freed first time.

6.3 Memory Overhead
Table 3 shows memory overhead on SPEC2006 benchmarks
introduced by DangSan. perlbench, omnetpp, xalancbmk
and astar benchmarks have huge memory overhead in gi-
gabytes. Memory overhead also comes from the metadata
management scheme, METAlloc. METAlloc stores and re-
trieves 16 bytes metadata for each object. It maintains meta-
data for all objects (including Stack and Global). We do not
track Stack and Global objects. Thus, maintaining 16 bytes
metadata for Stack and Global object can inflate memory
overhead numbers. Some defences may not require stack or
global metadata management. One of the improvement re-
quired in METAlloc is to have selective metadata manage-
ment. We believe that METAlloc will be used for other de-
fences along with DangSan. Another reason for the memory
overhead is, we increase one byte for every object alloca-
tion to solve off-by-one byte application compatibility issue.
However, tcmalloc allocates object with powers of 2 size.
This tremendously increases memory overhead. One im-
provement to reduce memory overhead is to select additive
increase log resize strategy. Table 3 also represents that in-
crease in memory requirement increases performance over-
head. This is directly proportional to the number of pointer
propagations and object allocations.
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Benchmarks Baseline
RSS

DangSan
RSS

Memory
Overhead(MB)

bzip2 854.142 869.161 15.02
gcc 114.34 369.207 254.87
milc 647.039 843.874 196.84
gobmk 33.8847 257.16 223.28
hmmer 31.6067 61.5345 29.93
sjeng 179.271 202.317 23.05
libquantum 71.4484 88.8538 17.41
h264ref 34.2017 58.7903 24.59
lbm 412.537 428.296 15.76
sphinx3 44.2548 617.769 573.52
perlbench 187.634 3012.63 2825.00
namd 50.1214 72.6506 22.53
dealII 196.355 1160.37 964.02
omnetpp 156.522 7626.64 7470.12
astar 87.5422 1993.17 1905.63
xalancbmk 318.452 2815.17 2496.72

Table 3. Memory overhead for the SPEC2006 benchmarks
(MB)

7. Limitations and Future Work
DangSan tracks only heap objects. Stack objects can be sup-
ported similar to heap objects. METAlloc provides uniform
way to store and retrieve metadata for stack objects. Static
instrumentation has to be changed to insert run-time checks
at the start and end of function calls. Moreover, we need
to handle longjmp that performs non-local jumps. How-
ever, frequent stack object allocations and deallocations in-
cur huge overhead. Furthermore, we conservatively instru-
ment pointer store instructions. We can perform advanced
inter-procedural and backward data flow analysis to elim-
inate stack and global objects accurately. One of the opti-
mization is to avoid instrumentation for simple pointer arith-
metic like p++. Similar to FreeSentry, we can move instru-
mented tracking function outside the loop if the same pointer
is used in the loop. Also, we can provide function attribute
to opt-out function from being instrumented.

8. Related Work
Much work has been done to prevent and detect use of dan-
gling pointers. Mitigation scheme include techniques like
static analysis and dynamic analysis. Other schemes pro-
pose customized memory allocators, memory error detec-
tion tools, safe languages etc.

Static Analysis: Static analysis performs source code
or binary analysis to find memory errors statically. [12],
SLAyer [8], needs inter-procedural pointer or data flow anal-
ysis. Static analysis does not cover all possible dangling
pointer dereferences because object allocations, dealloca-

tions, pointer propagations and dangling pointer dereference
can be in different modules, functions and threads. These
techniques are not scalable for large applications. In many
viable solutions, static analysis is combined with dynamic
run-time check to detect Use-after-Free exploits efficiently .

Dynamic Analysis. Dynamic analysis tracks run-time
pointer-object relationship. Recent schemes like DangNull [19],
FreeSentry [30], UnDangle [9], CETS [20], Address Sani-
tizer [26] use run-time information to prevent Use-after-
Free exploits. DangNull uses variant of red-black binary
tree to efficiently store and retrieve memory object meta-
data. DangNull has huge average run-time overhead of 80%.
Moreover, it does not track all pointers (Stack, Global and
Heap). FreeSentry has low average run-time overhead of
25%. However, it has no support for multi-threaded applica-
tions. That is, it is unclear how much performance overhead
FreeSentry incurs in production servers. UnDangle uses ex-
ecution trace, taint tracking technique to identify memory
locations associated for the same taint. It is useful in soft-
ware testing. It needs full test coverage to identify all dan-
gling pointers. It does not prevent dangling pointers use dur-
ing program execution. Address Sanitizer detects memory
errors during run-time. It extends compiler infrastructure
LLVM to provide memory protection option. It covers most
of the memory corruption bugs. However, it has on an aver-
age run-time overhead of 73%. [10] proposed improvements
over Electric Fence [10]. It uses page protection mechanism
to detect dangling pointer deference. It allocates new virtual
page for every memory object. It has solved the virtual ad-
dress space exhaustion problem by mapping multiple virtual
pages to same physical page. However, this technique is in-
efficient for the applications that have large number of object
allocations and deallocations.

Memory Allocators. Memory allocators designed to mit-
igate Use-after-Free vulnerabilities provide transparent so-
lution. Cling [7] memory allocator is based on type-safe ad-
dress reuse technique. Moreover, it does not use free mem-
ory for the metadata. Cling prevents type unsafe address
reuse but it does not prevent unsafe dangling dereference for
the same type object. DieHarder [24] memory allocator is a
probabilistic approach to find memory errors. It randomize
the location of heap objects that makes exploit hard to exe-
cute. DieHarder has low overhead but it is probabilistic (i.e.
may not cover all dangling pointer dereferences).

Memory error detectors. Valgrind [23] and Purify [15]
are widely used memory error debugging tools. Both the
tools are used in software testing and debugging. Therefore,
its effectiveness depends on the total test coverage. More-
over, Valgrind and Purify incurs huge performance overhead
in the order of 10x. GCCs Mudflap [11] performs dynamic
memory access check by maintaining identifier for every al-
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located object. Checking every memory access incurs huge
performance overhead.

Safe Languages: Cyclone [16] is a safe dialect of C
programming language. It prevents widely present spatial
and temporal vulnerabilities of C language. It performs flow
analysis and run-time checks. C applications require signif-
icant changes to port the application to Cyclone (as it has
somewhat different syntax and semantics to simplify static
analysis). It uses conservative garbage collection strategy
which makes it slower than regular C language. CCured [22]
adds memory safety to the C language by introducing run-
time checks. It needs metadata for run-time checks. Porting
of C application becomes difficult due to metadata require-
ment. Similar to Cyclone, CCured uses garbage collection
that introduces significant run-time and memory overhead.

9. Conclusion
In this paper, we presented DangSan, a fast and efficient
lock-less system to detect Use-after-Free exploits in multi-
threaded applications. Thread-safety in multi-threaded pro-
gram incurs prohibitively high run-time overhead. Our de-
sign (inspired from Log-structured file system) maintains
per-Thread per-Object metadata that eliminates contention
between threads. DangSan has moderate run-time overhead
on CPU intensive benchmarks when all pointers (Heap,
Stack and Global) are tracked. It has low throughput degra-
dation for widely used WebServers. Our complete and ef-
ficient DangSan system can be used for large production
applications.
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