
Jellyfish: Timely Inference Serving for Dynamic
Edge Networks

Vinod Nigade, Pablo Bauszat, Henri Bal, Lin Wang

Vrije Universiteit Amsterdam

IEEE RTSS 2022

DNNs are becoming a critical part of modern applications

2

Augmented Reality Autonomous Driving

©IKEA ©TESLA

Deep Neural Networks (DNNs)

Cat

Applications

Applications have to offload DNNs to edge servers

3

End Devices
limited compute capabilities

Edge Servers
powerful compute

Data transfer

Communication Networks

large and

accurate

DNNsdynamic

Applications need timely predictions

4

Clients Edge Server

Frame

Capture

DNN

Inference Time

Network Time

Network Time

Latency

SLO

• end-to-end latency service-level objectives (SLOs)  
(e.g., 100ms) that include network time to transfer data

• the application’s desired request rate (e.g., 25 FPS)

Edge-serving systems should support…

• multiple clients and their aggregate request rate on  
fixed compute resources, e.g., via request batching

Data transfer from clients shows significant variable delays

5

Video Frames

N
et

w
or

k
Ti

m
e

(m
s)

Big spikes in network time (up to seconds)

Data transfer over a network connection emulated with an LTE trace

How to handle variable network delays to serve requests on time?

Use data adaptation on the client side

6

• Adapt the data size based on the available network bandwidth (e.g., [AWStream, SIGCOMM’18])

+ Smooths out big spikes leading to more stable throughput

- Still significant variable delays causing variable compute budget on the server side

Video Frames

N
et

w
or

k
Ti

m
e

(m
s)

variable delays

Data
Adaptation

How to timely serve inference requests given a variable compute budget?

Use DNN adaptation on the server side

• Deploy DNN variants with different latency-accuracy tradeof profiles

• Select a DNN variant for a given compute budget

7

Inference

Latency

10ms 50ms 100ms

DNN

variants

DNN variant selected when the compute
budget time is < 100ms and > 50ms

e.g., [ALERT, ATC’20] [SubFlow, RTAS’20]

Challenges in combining data and DNN adaptation

8

Data
Adaptation

DNN
Adaptation

Challenges in combining data and DNN adaptation

9

• C1 Misaligned adaptation decisions

Case 1: Bigger data size and smaller DNN input size

DownscalingData
Adaptation

DNN
Adaptation

Leads to a waste
of extra network
time (100-150ms)

Challenges in combining data and DNN adaptation

10

• C1 Misaligned adaptation decisions

Case 1: Bigger data size and smaller DNN input size

Case 2: Smaller data size and bigger DNN input size

Downscaling

Leads to accuracy
degradation[1]

Data
Adaptation

DNN
Adaptation

[1] [Dengxin Dai, et. al., WACV’16]

Upscaling

Leads to a waste
of extra network
time (100-150ms)

Challenges in combining data and DNN adaptation

11

• C1 Misaligned adaptation decisions

• C2 Un-coordinated adaptations for multiple clients

Case 1: Bigger data size and smaller DNN input size

Case 2: Smaller data size and bigger DNN input size

Downscaling
Leads to a waste
of extra network
time (100-150ms)

Leads to accuracy
degradation[1]

Client 1
Client 2

Client N

Data
Adaptation

DNN
Adaptation

[1] [Dengxin Dai, et. al., WACV’16]

No resource capacity
to run separate DNNs  
for every client

Upscaling

Introducing…

• Defines latency SLO in an end-to-end fashion, taking into account the variable network time

• Utilizes data and DNN adaptation jointly and aligns their adaptation decisions

• Coordinates adaptation decisions for multiple clients, a.k.a. collective adaptation

• Supports batching for resource efficiency

Jellyfish

13

An edge-centric serving system for dynamic edge networks with timeliness as a goal

Edge-serving systemInference

requests

Clients

Jellyfish has to solve a complex scheduling problem

14

1. Selection of a few DNN variants on a limited
amount of compute resources

2. Mapping every client (their requests) to the
selected DNN variants

3. Deciding the batch size of every DNN variant for
serving multiple clients

4. Informing clients about their mapped DNN and
data sizes

Solve continuously without violating end-to-end latency SLO

Edge server

Inference

requests

Clients

Scheduler

3. Batching

4. Data size  
decision

2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps

Jellyfish has to solve a complex scheduling problem

15

1. Selection of a few DNN variants on a limited
amount of compute resources

2. Mapping every client (their requests) to the
selected DNN variants

3. Deciding the batch size of every DNN variant for
serving multiple clients

4. Informing clients about their mapped DNN and
data sizes

Solve continuously without violating end-to-end latency SLO

Edge server

Inference

requests

Clients

Scheduler

3. Batching

4. Data size  
decision

2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps

Jellyfish has to solve a complex scheduling problem

16

1. Selection of a few DNN variants on a limited
amount of compute resources

2. Mapping every client (their requests) to the
selected DNN variants

3. Deciding the batch size of every DNN variant for
serving multiple clients

4. Informing clients about their mapped DNN and
data sizes

Solve continuously without violating end-to-end latency SLO

Edge server

Inference

requests

Clients

Scheduler

3. Batching

4. Data size  
decision

2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps

Jellyfish has to solve a complex scheduling problem

17

1. Selection of a few DNN variants on a limited
amount of compute resources

2. Mapping every client (their requests) to the
selected DNN variants

3. Deciding the batch size of every DNN variant
for serving multiple clients

4. Informing clients about their mapped DNN and
data sizes

Solve continuously without violating end-to-end latency SLO

Edge server

Inference

requests

Clients

Scheduler

3. Batching

4. Data size  
decision

2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps

Jellyfish has to solve a complex scheduling problem

18

1. Selection of a few DNN variants on a limited
amount of compute resources

2. Mapping every client (their requests) to the
selected DNN variants

3. Deciding the batch size of every DNN variant for
serving multiple clients

4. Informing clients about their mapped DNN
and data sizes

Solve continuously without violating end-to-end latency SLO

Edge server

Inference

requests

Clients

Scheduler

3. Batching

4. Data size  
decision

2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps

Formulate the problem as a mixed-integer linear program (MILP)

19

Existing MILP solvers take around

20 seconds to 15 minutes

With 4 threads, 4 GPU workers, 16
DNNs, 16 Clients, and batch size 12

Not feasible to run in real-time (sub-seconds)

How to solve the scheduling problem continuously in real-time?

Maximize overall accuracy

Satisfy latency & throughput constraints

Jellyfish decomposes the problem into two sub-problems

20

A. Client-DNN mapping

C1 C2 C3 C4 C5
Clients

DNNs

M1 M2

Batch Size 4 1

B. DNN selection

• Optimize accuracy

• Satisfy latency & throughput constraints

Compute
Resources

• Optimize accuracy

• Serve a maximum number of requests

M1DNNs
Variants

M2 M3

G1 G2

C1 C4 C5
 C2 C3
M1M2

A. Client-DNN mapping

21

As a standard 0-1 knapsack problem

C1 C2 C3 C4 C5
Clients

Request

Rates

10 10 20 30 10

Items with weights

M1DNN

Batch Size 2
Throughput 60

Fit{ {

Knapsack with a

capacity of 60

But we have to solve the standard knapsack problem for every batch size

M1

C2 C3 C4

Solution

A. Client-DNN mapping

22

One-shot dynamic programming to solve for all batch sizes in one go

M1DNN

Batch Size 2
Throughput 60

3
80

One-shot DP

C1 C2 C3 C4 C5
Clients

Request

Rates

10 10 20 30 10

Batch Size

DNN throughput

0 10 20 30 40 50 60 70 80

0 0 0 0 0 0 0 0 0 0

C1 0 10 10 10 10 10 10 10 10

C2 0 10 20 20 20 20 20 20 20

C3 0 10 20 30 40 40 40 40 40

C4 0 10 20 30 40 50 60 0 0

C5 0 10 20 30 40 50 60 0 0

2 3

Sorted

clients

Clients that violate compute
budget constraints

• To optimize accuracy, we first map clients on a bigger DNN and then the remaining clients on smaller DNNs

A. Client-DNN mapping

23

One-shot dynamic programming to solve for all batch sizes in one go

M1DNN

Batch Size 2
Throughput 60

3
80

C1 C2 C3 C4 C5
Clients

Request

Rates

10 10 20 30 10

Batch Size

DNN throughput

0 10 20 30 40 50 60 70 80

0 0 0 0 0 0 0 0 0 0

C1 0 10 10 10 10 10 10 10 10

C2 0 10 20 20 20 20 20 20 20

C3 0 10 20 30 40 40 40 40 40

C4 0 10 20 30 40 50 60 0 0

C5 0 10 20 30 40 50 60 0 0

2 3

Sorted

clients

Clients that violate compute
budget constraints

• To optimize accuracy, we first map clients on a bigger DNN and then the remaining clients on smaller DNNs

One-shot DP

A. Client-DNN mapping

24

One-shot dynamic programming to solve for all batch sizes in one go

M1DNN

Batch Size 2
Throughput 60

3
80

C1 C2 C3 C4 C5
Clients

Request

Rates

10 10 20 30 10

Batch Size

DNN throughput

0 10 20 30 40 50 60 70 80

0 0 0 0 0 0 0 0 0 0

C1 0 10 10 10 10 10 10 10 10

C2 0 10 20 20 20 20 20 20 20

C3 0 10 20 30 40 40 40 40 40

C4 0 10 20 30 40 50 60 0 0

C5 0 10 20 30 40 50 60 0 0

2 3

Sorted

clients

Clients that violate compute
budget constraints

• To optimize accuracy, we first map clients on a bigger DNN and then the remaining clients on smaller DNNs

One-shot DP

A. Client-DNN mapping

25

One-shot dynamic programming to solve for all batch sizes in one go

M1DNN

Batch Size 2
Throughput 60

3
80

C1 C2 C3 C4 C5
Clients

Request

Rates

10 10 20 30 10

Batch Size

DNN throughput

0 10 20 30 40 50 60 70 80

0 0 0 0 0 0 0 0 0 0

C1 0 10 10 10 10 10 10 10 10

C2 0 10 20 20 20 20 20 20 20

C3 0 10 20 30 40 40 40 40 40

C4 0 10 20 30 40 50 60 0 0

C5 0 10 20 30 40 50 60 0 0

2 3

Sorted

clients

Clients that violate compute
budget constraints

• To optimize accuracy, we first map clients on a bigger DNN and then the remaining clients on smaller DNNs

One-shot DP

B. DNN selection

26

An iterative search process

Searching r DNN instances from a DNNs zoo with
n DNN variants is combinatorial:
(n + r - 1

r)
• Exhaustively searching for the DNN set from all possible

combinations of DNN variants can become expensive

• An iterative search process that uses the  
client-DNN mapping to evaluate DNN sets

• Simulated annealing (SA) to search for the next set  
of DNN instances

client-DNN mapping Next DNNs set

Evaluate Search

Iterative process

How well does Jellyfish perform?

Experimental setup

28

Jellyfish is evaluated on a popular video analytics task and real-world network traces

Synthetic

trace

WiFi

trace

LTE

trace

Video Frames
BW

 (M
bp

s)
BW

 (M
bp

s)
BW

 (M
bp

s)

• Task: vehicle object detection

• Videos: three traffic videos 10min each

Metrics

• Analytics accuracy: standard F1 score

• Miss rate: latency SLO violations

Clients Configuration

• Number of clients: {1, 2, 4, 8}

• SLOs: {75, 100, 150} milliseconds (ms)

• FPS: {15, 25}

Server Configuration

• GPUs: 2 RTX2080Ti

• DNNs: 16 YOLOv4 variants

End-to-end performance on synthetic network trace

29

• Achieves extremely low miss rates (1%) when
the system is not overloaded

≤

• Maintains high accuracy by selecting bigger
DNNs whenever possible

• Maintains high worker utilization (up to 75%)
when the system becomes more saturated

End-to-end performance on synthetic network trace

30

• Achieves extremely low miss rates (1%) when
the system is not overloaded

≤

• Maintains high accuracy by selecting bigger
DNNs whenever possible

• Maintains high worker utilization (up to 75%)
when the system becomes more saturated

End-to-end performance on synthetic network trace

31

• Achieves extremely low miss rates (1%) when
the system is not overloaded

≤

• Maintains high accuracy by selecting bigger
DNNs whenever possible

• Maintains high worker utilization (up to 75%)
when the system becomes more saturated

Comparison with baselines on three network traces

32

Server:

• Scheduler: EDF-like [Clockwork, OSDI’20]

• Three baseline variants: lowest DNN (B_L),

middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware

[AWStream, SIGCOMM’18]

Comparison with baselines on three network traces

33

• Baselines with bigger static DNNs have higher miss rates

Server:

• Scheduler: EDF-like [Clockwork, OSDI’20]

• Three baseline variants: lowest DNN (B_L),

middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware

[AWStream, SIGCOMM’18]

Comparison with baselines on three network traces

34

• Baselines with bigger static DNNs have higher miss rates

• Baselines with smaller static DNNs have lower miss rates
but also lower accuracy

Server:

• Scheduler: EDF-like [Clockwork, OSDI’20]

• Three baseline variants: lowest DNN (B_L),

middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware

[AWStream, SIGCOMM’18]

Comparison with baselines on three network traces

35

• Jellyfish adaptively selects optimal
DNNs and thus achieves low miss
rates while maintaining high accuracy

• Baselines with bigger static DNNs have higher miss rates

• Baselines with smaller static DNNs have lower miss rates but
also lower accuracy

Server:

• Scheduler: EDF-like [Clockwork, OSDI’20]

• Three baseline variants: lowest DNN (B_L),

middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware

[AWStream, SIGCOMM’18]

Jellyfish scheduler is near-optimal and runs in real-time

36

• The approximation ratio compared to MILP 
ranges from 0.966 to 0.996

• For up to 8 GPUs and 32 clients, the scheduler has
running times less than seconds

Jellyfish scheduler is near-optimal and runs in real-time

37

• The approximation ratio compared to MILP 
ranges from 0.966 to 0.996

• For up to 8 GPUs and 32 clients, the scheduler has
running times less than seconds

Discussion and future work

• Request rate adaptation is not incorporated in the current version

• Compute budget estimation depends on the accurate estimation of  
compressed data size, which is difficult due to the changing data content

• The system must be tuned for stable performance (i.e., for predictability)

38

Summary

• Timely inference serving over dynamic edge networks is important and challenging

• We propose Jellyfish which…

- aims to fulfill end-to-end latency SLOs specified over the variable network time and DNN inference time

- employs data and DNN adaptation jointly and coordinates adaptation decisions for multiple clients

- achieves extremely low latency SLO violations while maintaining high accuracy

39

Contact: Vinod Nigade

Email id: v.v.nigade@vu.nl

Source code: https://github.com/vuhpdc/jellyfish

mailto:v.v.nigade@vu.nl
https://github.com/vuhpdc/jellyfish

Extra slides

DNN selection

41

Unlike conventional SA, Jellyfish has two sequential modes of operation

1. DEGRADE

• upgrade DNNs to

maximize the overall accuracy

• degrade DNNs to serve

desired number of clients

2. UPGRADE

Previous

DNNs set

New

DNNs set

Client-DNN

Mapping

Generate Next
DNNs Set

Stop or Next
Iteration

Accept or Reject

Solution

for evaluation

Input

DNNs set

Output

DNNs set

Customised SA

More details in the paper

• DNN pre-fetching technique to minimize DNNs switching cost

• Client’s bandwidth estimation

• System design

42

Dispatcher

Clients

W
or

ke
r M

an
ag

er
 Worker 1

Worker 2

Worker N

Scheduler

DNN Zoo

Daemon

La
te

nc
y-

ac
cu

ra
cy

 p
ro

fil
es

…

DNN and batch size
selection

Client mapping

Input size

Edge

Monitored info

❶

❷

❸

❹

❺

DNNs and profiles

❻

Jellyfish

Comparison to independently running data and DNN adaptation

43

• Without proper coordination and alignment between data and
DNN adaptation, we see high miss rates or low accuracy

Data adaptation

• DAof: disabled

• DAbw: bandwidth-aware

• DAslo: bandwidth and slo-aware

DNN adaptation:

• CB50%: 50% of the SLO as compute budget

• CB75%: 75% of the SLO as compute budget

Performance on a large-scale setup with LTE trace

44

Clients Configuration

• Number of clients: {8, 16, 24, 32}

• SLOs: {100, 150} milliseconds (ms)

• FPS: 15

• AWS instance: t3.2xlarge

Server Configuration

• GPUs: 8 distributed NVIDIA T4

• Worker AWS instance: g4dn.2xlarge

• Dispatcher & scheduler AWS instance: c5.9xlarge

• Jellyfish achieves miss rates within the acceptance range (1-3%),
even on a large-scale setup with unstable inference timings

