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ABSTRACT
Programmable networks have received tremendous attention re-
cently. Apart from exciting network innovations, in-network com-
puting has been explored as a means to accelerate a variety of
distributed systems concerns, by leveraging programmable net-
work devices. In this paper, we extend in-network computing to an
important class of applications called deep neural network (DNN)
serving. In particular, we propose to run DNN inferences in the
network data plane in a distributed fashion and make our pro-
grammable network a powerful accelerator for DNN serving. We
demonstrate the feasibility of this idea through a case study with a
real-world DNN on a typical data center network architecture.
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1 INTRODUCTION
The emergence of programmable, high-performance network switches
and SmartNICs, has not only enabled exciting innovations in net-
working but also inspired a new computing paradigm called in-
network computing [6, 12].With in-network computing, programmable
network devices are instructed to accelerate application compo-
nents by leveraging the high-throughput, low-latency processing
capabilities, and convenient on-path placement of these devices [2].
Example applications that have been proven to benefit from in-
network computing are caching [5], aggregation [10, 13], agree-
ment [4], and database query processing [18].
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Deep learning has become the de facto approach for various
inference tasks such as object detection and speech recognition.
With the widespread adoption of deep learning, it becomes crit-
ical that we can serve DNNs with high performance in terms of
both throughput and latency. DNN serving is usually done prefer-
ably with high-end accelerators like GPUs/TPUs over CPUs due to
higher efficiency and lower costs [14]. GPUs/TPUs typically employ
batching to improve throughput, at the cost of increased inference
latency [14].

Considering both the fast development of programmable net-
work devices and the high demand for DNN serving, we ask a bold
question: Can we leverage a programmable network to perform DNN
serving? Given that a modern Tofino2 switch can process packets
with nanosecond latency, and at the rate of billions of packets per
second [1], DNN serving would achieve an unprecedented level
of performance if the DNN can be executed entirely in the data
plane of the programmable network. Note that with this design the
inference can be performed “on the fly” while transferring DNN
input data on the network, eliminating the need of accelerators.

Prior work has explored the intersection of programmable net-
works and machine learning. For example, in-network aggregation
has been used to accelerate the gradient synchronization in data-
parallel DNN training [10, 13]. Other work has explored data-plane
packet classification by running per-packet inference tasks, like
decision trees, SVMs and small (binary) neural networks, on pro-
grammable switches and SmartNICs [16, 19]. Confined to a single
device, such approaches limit the size of the supported ML models,
and work towards addressing this issue only involves new hardware
architectures [17]. So far, and to the best of our knowledge, none
of these efforts support the serving of large DNNs (models with
millions of weights) across a network of programmable network
devices targeting user applications.

In this paper, we propose an in-network system for fast, end-
to-end DNN serving by distributing a DNN across a network of
programmable switches, as depicted in Figure 1. Our inspiration
stems from the observation that DNNs are dataflow computations
similar to how packets flow through a network. Based on that, we
1 map the neurons in the DNN to the physical network switches,
2 craft and route packets carrying the input/intermediate data
to go through the switches containing the corresponding neurons,
and 3 instruct each switch to perform the computations specified
by the neurons assigned to the switch. In the rest of this paper, we
demonstrate the feasibility of this idea through a case study with
a real-world DNN and a typical data center network architecture.
We also discuss further challenges.
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Figure 1: An overview of in-network DNN serving.

2 A CASE STUDYWITH MINI-ALEXNET
We use a simplified version of AlexNet [9] (mini-AlexNet) used
in [11] and trained on CIFAR-10 [8] with three dimensions (height,
width, and channel). We map the mini-AlexNet network to a set of
programmable switches using the data center network architecture
(spine/leaf) adapted from the Google infrastructure [15].

The mini-AlexNet neural network is described in Table 1. It con-
sists of an input layer and three convolutional layers followed by
three fully connected layers. The convolutional layers are com-
posed of convolutional filters, ReLU activation functions, and 2D
Max Pooling (2x2) layers. Due to the fact that the state-of-the-art
programmable switches (Barefoot Tofino2 [3]) are not equipped
with Floating Point Units (FPUs), we store the inputs and weights
in 8-bit integers. To avoid multiplication and aggregation over-
flow, we can increase the input values to 32-bit integers as it does
not affect the number of operations and the cost of storing results
is either temporary, or minuscule compared to weights. Previous
work has shown that fixed-point arithmetic is faster than floating
point equivalent accuracy, and 8-bit precision is sufficient for DNN
inference [17].

DNN-switch mapping. The data center network architecture
we use is depicted in Figure 2. It consists of four programmable
switches as spines and eight programmable switches as leaves. Each
leaf switch is connected to all spine switches with 400GbE links.
The spine/leaf architecture advantage is that any leaf (spine) switch
is connected to any other leaf (spine) switch in exactly two hops.
We use this property to map the layers of the DNN to just leaf
switches (one layer is mapped to one switch) to avoid stragglers in
the synchronization.

The Tofino2 switchwe consider here has four processing pipelines,
each equipped with eight 400GbE ports supporting up to 12.8Tb/s
of aggregate throughput. To leverage the processing power of all
four pipelines of each switch, we distribute the neurons of the same
layer to all the pipelines on the same switch (as the neurons in the
same layer do not need to communicate with each other) evenly
based on the layer type: For the convolutional layer we divide the
number of filters by the number of switch pipelines and allocate the
convolutional filters to the respective pipelines. For the dense layer,
we divide the number of dense neurons by the number of switch

S1 S2 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 Spine
Leaf

Figure 2: The spine/leaf network architecture.

pipelines and store the dense neurons’ weights in the respective
pipelines.

In the mini-AlexNet scenario, after we get the input from the
client (on S1), we allocate and store 16 convolutional filters to
each pipeline, as the first convolutional layer (on S2) has 64 filters.
After the on-switch execution (detailed later), the packets for the
next layer are generated (detailed later) and are sent to the next
convolutional layer (on S3). We follow the same procedure until
we reach the first dense layer (on S5) with 4096 neurons. We divide
the dense layer into four parts and allocate each part containing
1024 neurons to each of the pipelines and perform the neuron
computations until we reach the output layer (on S7), where we
obtain the prediction result and send it back to the client.

Packet generation and routing. Once the DNN has been par-
titioned and the neurons deployed on the switches, the next step is
to generate packets and route them on the network following the
DNN dataflow. For the input layer, the input data is encapsulated
into as many packets as are required (based on the input and the
packet header size) and is multicast to the switch’s pipelines (as
the neurons are distributed among all pipelines) hosting neurons
that are directly connected to that layer. Upon completing its com-
putations, a layer will emit packets encapsulating the input for the
next layer to the spine switches, and these packets will be multicast
to the next associated switch hosting the next layer. Each switch
maintains a forwarding table applying the above logic to route the
packets inside the network. Each packet carries a label through
which its target layer can be identified. The switch multicasts the
packet based on the label to all the pipelines of the next switch.
Upon a packet’s arrival, the switch knows the computations to
apply to the data carried by that particular packet.

In the mini-AlexNet scenario, the input switch (S1) multicasts the
input to all the spine switches (with recirculation), and the switches
in the spine layer redirect the packets to the first convolutional
layer (on S2). After the processing of the first convolutional layer
is done, each pipeline has 1/4 of the input for the next layer. With
the spine/leaf design, we transfer each input segment to the spine
switches, and there we multicast the input segments to all four
pipelines of the next switch (on S3). Each pipeline in S3 receives
packets from a switch in the spine layer, shaping the current layer’s
input. We follow the same procedure until we reach the output
layer, where we send back the final prediction.

On-switch execution. Switches will perform computations for
the neurons they host upon packet arrivals. More specifically, as
each pipeline of the switch gets the entire input, we perform the
computations based on the layer type. If the layer is a convolutional
layer, we apply the filter to a subset of the input and store the result
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mini-AlexNet (CIFAR-10) Number of Parameters Number of Operations Memory (byte) Mapped Switch

Layer 1 Input: 32 × 32 × 3 0 0 3,072 S1
Layer 2 Conv1: 3 × 3 × 3 × 64 1,792 3,110,400 16,192 S2
Layer 3 Conv2: 3 × 3 × 64 × 192 110,784 37,347,648 117.696 S3
Layer 4 Conv3: 3 × 3 × 192 × 384 663,939 21,227,520 665,475 S4
Layer 5 FC1: 4096 6,295,552 12,582,911 6,299,648 S5
Layer 6 FC2: 2048 8,390,656 16,777,215 8,392,704 S6
Layer 7 FC3 (Output): 10 20,490 40,959 20,500 S7

Table 1: The mini-AlexNet network. It contains seven layers, with over 15 million parameters and 91 million operations
requiring less than 16MB of memory to store.

of the dot product. If it is a dense layer, we multiply all the input
values by all the weights and aggregate their results.

We decompose each multiplication into a number of shifts. The
input is shifted left by 𝑖 if the 𝑖-th bit of the 8-bit weight is set,
otherwise by 0. All shifts are performed in parallel, in a single stage,
and the intermediate results are stored in temporaries. This step
takes one stage, assuming predicate instructions (to check if the 𝑖-th
bit is set), otherwise two. Then, a reduction step aggregates the in-
termediate results. Since we use 8-bit weights, this step takes three
stages. Given 𝑁 free ALUs in the first stage, we can perform 𝑁 /8
multiplications in parallel, each of which has a maximum depth
of five stages. This allows us to replicate the process a number of
times without recirculation. The (intermediate) result of each multi-
plication is accumulated to a register, with a cost, in terms of stages,
logarithmic to the number of multiplications performed. If the dot
product requires more multiplications, the packet is recirculated.

Then we apply the ReLU activation function to the result of the
dot product by checking whether the most significant bit (MSB) is 1
(sign bit) and replacing the value with 0. For the max pooling part,
we check whether the current value is the last piece of the pooling
window. A major challenge here is to find the pooling elements due
to the fact that there is no mod operation in the switches available.
To avoid this issue, we process the inputs in the order of the max
pooling window. For a simple 2 × 2 pooling window, after we
processed all four window’s values, we get the maximum of them
in four cycles (three comparisons in total; two cycles for the first
two comparisons in parallel and storing the result and two cycles
for the second stage comparison). To meet the promised 12.8Tb/s
throughput, Tofino2 allows a limited number of operations per
packet traversal (few 10’s of multiplications like the one described
above). Therefore, we need to recirculate to process all the inputs for
all the filters in the same pipeline. For each filter/neuron on a switch,
the switch accumulates the multiplication results and maintains a
counter to ensure that packets from all weights have been processed
before emitting the result as a packet to the downstream layers.

In Table 1 we calculate the number of operations and memory re-
quirements for each layer of mini-AlexNet. Even the most memory
hungry of the layers (Layer 6) requires less than 10% of the available
memory on the Tofino2 (a couple of hundred of MBs). However, the
number of operations greatly exceeds the 10’s of operations we can
perform in one traversal. To solve this issue, we recirculate the in-
put in the switch with a new set of operations until all the required
operations are done. In the most computation-intensive layer (Layer
3), each pipeline needs to compute roughly 10, 000, 000 operations,

we need to recirculate the same input less than 1, 000, 000 times. The
packet recirculating comes with a latency cost similar to parsing
another packet. Tofino2 can potentially process six billion packets
(1.5 billion packets per pipeline), resulting in less than 1ms to pro-
cess even the most computation-intensive layer in our scenario. In
total, a set of available switches in the data centers require less than
2𝑚𝑠 to perform inference in the mini-AlexNet scenario. Compared
to the evaluations reported in [11], our in-network DNN serving
system not only reduces the inference latency by over 2× and 2.5×
compared to CPU and GPU, respectively but also eliminates the
necessity of having inference servers.

3 CHALLENGES AND DISCUSSION
Accuracy improvement. Floating point addition on programmable
switches has been carefully explored in [20] while other more com-
plex arithmetic operations are still not feasible with the current
switch design. Currently, we use 8-bit fixed point weights as we
are still not able to implement the floating point multiplication op-
erations in the data plane respecting the memory access limitation
of Tofino2 switches. We plan to explore how packet re-circulation
can help work around this limitation.
Support for more complex layer types. So far, we have only
discussed how to handle DNNs with convolutional and dense layers.
However, popular DNNs typically involve a variety of layer types
with more complex structures and activation functions, calling for
a careful design of the data structure. There are also layers with
nonlinear activation functions like tanh and sigmoid, which are
currently hard to perform on programmable switches.
Fault tolerance. Switches and links can fail, and ensuring that the
final prediction is generated without being affected by such failures
is essential. Also, a packet loss between switches could render a
DNN execution stagnation due to the use of the per-neuron counter.
We acknowledge that achieving reliability for stateful in-network
computing like DNN serving is a big challenge, which has not been
extensively studied yet [7]. We leave this for future work.
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