Clownfish: Edge and Cloud Symbiosis for Video
Stream Analytics

Vinod Nigade, Lin Wang, Henri Bal
VU Amsterdam

Abstract—Deep learning (DL) has shown promising results
on complex computer vision tasks for video stream analytics
recently. However, DL-based analytics typically requires intensive
computation, which imposes challenges to the current computing
infrastructure. In particular, cloud-only solutions struggle to
maintain stable real-time performance due to the streaming over
the best-effort Internet, while edge-only solutions require the DL
model to be optimized (e.g., pruned or quantized) carefully to fit
on resource-constrained devices, affecting the analytics quality.

In this paper, we propose Clownfish, a framework for efficient
video stream analytics that achieves symbiosis of the edge and
the cloud. Clownfish deploys a lightweight optimized DL model
at the edge for fast response and a complete DL model at the
cloud for high accuracy. By exploiting the temporal correlation
in video content, Clownfish sends only a subset of video frames
intermittently to the cloud and enhances the analytics quality
by fusing the results from the cloud model with these from the
edge model. Our evaluation based on a system prototype shows
that Clownfish always runs in real time and is able to achieve
analytics quality comparable to that of cloud-only solutions, even
under highly variable network conditions. Clownfish is generally
applicable to all video stream analytics tasks that can leverage
temporal correlations.

I. INTRODUCTION

Video stream analytics has become a fundamental com-
ponent in various applications in the mobile and Internet-
of-Things (IoT) era [1]-[5], [5]-[11]. Applications such as
augmented reality and traffic monitoring use cameras to un-
derstand the environment. These cameras generate continuous
streams of high-quality video data, which has to be analyzed to
provide insights by performing computer vision tasks. For ex-
ample, the traffic monitoring application recognizes car license
plates and monitors car trajectories using object recognition
and tracking techniques [12]. In many cases, video stream
analytics has to be carried out in real time, such that timely
reactions can be performed [3], [6], [7], [13], [14]. Recently,
deep learning (DL) has become a dominant approach for video
stream analytics [15]-[18]. While achieving higher accuracy
compared with traditional approaches, DL-based approaches
are generally more computation intensive [19]. This further
aggravates the challenge of real-time video stream analytics.

Current practices for DL-based video stream analytics are
either cloud- [6], [7] or edge-only [3], [13], but none of them
are a silver bullet. In cloud-only solutions, the video data has
to be continuously streamed to a remote cloud via a wide
area network (WAN) before being processed. However, video
stream analytics applications typically require a sufficiently
high frame rate and low latency [7], [20]. This is challenging in
the cloud-only setup, given the high bandwidth variations and

jitter that are omnipresent in WAN and wireless and cellular
networks [7], [21], [22]. When the network performance drops,
the analytics quality will be degraded accordingly.

Alternatively, edge-only solutions propose to deploy com-
puting devices at the network edge and carry out video stream
analytics directly from the edge [2]. Since the computation
is now performed in close proximity of the video source,
the network-related issues can be avoided. However, embed-
ded edge devices (e.g., microcontrollers or NVIDIA Jetson
boards), due to their limitations of physical space or energy
efficiency, are typically resource-constrained [23], [24]. Thus,
DL models have to be optimized or compressed to fit on
these devices. The popular model optimization techniques
include input resizing, network pruning, data quantization,
and model distillation [23]-[27]. However, applying these
techniques without affecting the analytics accuracy is chal-
lenging, which depends on various factors such as the choice
of the optimization method and the model complexity [28]
and typically requires tedious parameter tuning in a large
parameter space.

In this paper, we propose a hybrid approach to overcome
these limitations and present Clownfish — a novel video stream
analytics framework that achieves edge-and-cloud symbio-
sis. Our motivation is to leverage the temporal correlations
observed in video content, where the analytics result for a
video frame (or a batch of frames) can be used to improve
the analytics for later (batches of) video frames if there are
strong temporal correlations in the video content. Based on
this observation, Clownfish runs an optimized DL model at the
edge for real-time responses and enhances the edge analytics
results by fusing the generally more accurate analytics results
that are intermittently obtained from the cloud running a
complete (unoptimized) DL model for the same analytics task.
Since the cloud model is only applied on a small subset of
the video frames, Clownfish relaxes the network requirement
in the cloud-only solution dramatically, with significantly im-
proved analytics quality compared with the edge-only solution.
Overall, Clownfish reaps the benefits of both the edge and the
cloud through its hybrid design.

Achieving harmonic edge-and-cloud symbiosis is non-trivial
and the challenges manifest mainly in the following key
questions: (a) which video frames to send to the cloud and
(b) how to fuse the cloud analytics results, which are inter-
mittent and possibly delayed to achieve high overall analytics
accuracies. To address these challenges, Clownfish provides a
systematic methodology which features the following designs.

First, we define a similarity score to estimate the temporal
correlations between two analytics inputs. The similarity score
is calculated with a learning-based approach where we learn
directly on the feature vectors produced by the DL model
at the edge. Second, we identify application contexts based
on the similarity score and apply a context-aware periodical
filtering mechanism to make decisions on which video frames
to send to the cloud. Third, we use an exponential smoothing
function, parameterized with the similarity score, for the fusion
of analytics results from the edge and cloud models. Finally,
Clownfish includes a confidence-aware design where the ex-
ponential smoothing function for result fusion is weighted by
the analytics confidence. This is because in some cases, fusing
cloud analytics results may even degrade the overall accuracy,
as some of the cloud analytics results show low confidence.
In summary, this paper makes the following contributions.

« We propose a novel framework for real-time video stream
analytics, which exploits the advantages of both the edge
and cloud platforms, simultaneously.

o We provide a systematic methodology to achieve edge-
and-cloud symbiosis based on the concept of similarity
score, which achieves high overall analytics accuracy by
carefully selecting video frames to send to the cloud
and fusing the intermittent and possibly delayed analytics
results from the cloud.

e We build a system prototype for Clownfish and evaluate
its performance through extensive experiments with real-
world applications. Our experimental results show that
Clownfish is able to maintain real-time performance sim-
ilar to the edge-only solution while achieving accuracies
comparable to the cloud-only solution (accuracy gap
within around 2%), under varying network conditions.
Clownfish also outperforms existing filtering-based ap-
proaches on both accuracy and throughput.

The rest of the paper is organized as follows. Section II
presents background and our motivation. Section III presents
our system design. Section IV explains our results fusion
method. Section V provides our system implementation details
and Section VI shows our experimental results. Section VII
discusses related work. Section VIII describes challenges and
future work, and section IX concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background information
and motivate our work.

A. Video Stream Analytics

With the widespread adoption of cameras in various envi-
ronments, video stream analytics has become a fundamental
component of a variety of mobile and IoT applications, includ-
ing augmented reality, traffic monitoring, and public safety at
airports [29]. These applications typically require high analyt-
ics performance with respect to both the execution latency
and the analytics accuracy [30]. In essence, video stream
analytics applies a computer vision algorithm (e.g., for object
detection) on video frames. Traditional video stream analytics

pipelines employ algorithms that are based on handcrafted
features, where a pre-defined feature vector is first computed
on each target frame and then fed into a classifier like a support
vector machine (SVM), which finally produces the analytics
result [31]. Overall, approaches based on handcrafted features
cannot match human performance on accuracy due to factors
such as bad feature selection [32].

The real takeoff of applying video stream analytics in IoT
applications largely attributes to the remarkable advancement
of deep learning in recent years [33]. With deep learning
approaches, a deep neural network (DNN) is trained offline
with labeled datasets, which is later used at runtime for con-
ducting end-to-end inference [32]. Compared with approaches
based on handcrafted features, DNNs produce much higher
accuracies in general but require more computations due
to the dramatically increased complexity. Nowadays, high-
performance accelerators like GPUs and TPUs are employed
for DNN-based video stream analytics [19].

While computer vision tasks like object/face recognition
only perform per-frame inference, a considerable body of tasks
such as identifying human actions, gestures, or activities, take
as input a (consecutive) set of frames, i.e., a frame window. In
this case, the temporal features that capture motion information
across multiple video frames are equally important as the
spatial features [34]. The window-based inference required
in those motion-related tasks deteriorates the computational
performance issue due to several reasons: More video frames
have to be processed in real-time; preprocessing becomes more
complex (e.g., involving expensive optical flow calculation);
and the DNN itself becomes heavier with the introduction
of the temporal dimension. For example, the state-of-the-art
action recognition method I3D (Inception-v1 3D) takes around
274 ms to process a window of 64 frames of size 224 x 224
on the NVIDIA Titan-X GPU, while this number is only
around 10 ms (Inception-v1) for image recognition on a single
frame. Overall, the increased computation complexity imposes
a critical challenge for real-time video stream analytics.

B. Cloud vs. Edge Computing

Video stream analytics is mostly performed in the cloud
due to its high computational demands [19], [36]. One critical
challenge in the cloud-based setup concerns the streaming
part where a large volume of high-quality video data has
to be continuously transmitted to the cloud over the wide
area network (WAN). Unfortunately, the growth of the WAN
bandwidth has not kept up with the pace of the application
bandwidth requirement in recent years [37]. This mismatch
makes the network become a bottleneck in many cloud-based
solutions. Even worse, WAN bandwidth is not only scarce but
also relatively expensive and highly variable [21], [22], [38],
[39]. Researchers have explored how to make tradeoffs be-
tween bandwidth consumption and analytics accuracy through
adapting the quality (including frame resolution and frame
rate) of the video stream [36], [39]. Nonetheless, the analytics
accuracy suffers inevitably in case of poor network conditions,
rendering the overlying applications, especially those mission-

T
_ 82 i NASNet-large
2\0, a i Inception-v4

[=

380 s
5 @ | Inception-v4-quant
8781 gi
o ol
(V] >\:
N 9
276 §!
: ol
) 74 = I,.e ASNet-mobile

| H v -
% .: ption-v1-quant

1
E 72{ @ Mobilenet-v2-1.0-224

) Mobilenet-v2-1.0-224-quant
1
0 100 200 300 400 500 600

Latency (ms)

Fig. 1: Model accuracy vs. execution time of complete and
optimized (with 8-bit integer quantization) models for image
classification with TensorFlow Lite on Pixel 3 (Android 10),
reported in [35]. The numbers are based on model executions
on the CPU using NNAPI (Neural Network Android API).

critical ones like public safety, unreliable. Techniques such as
filtering [40] and early discarding [8] have also been explored,
but they are only applicable in certain environments where a
clear pattern of contextual irrelevance can be observed.

Recently, edge computing has gained traction as an alter-
native to the cloud-based setup to overcome network-related
issues [41]. Edge computing proposes to deploy a small
amount of computing resources (e.g., co-locate an NVIDIA
Jetson board with a camera) in situ and perform data ana-
Iytics in close proximity of the data source. Due to physical
constraints and economic concerns, edge resources are usually
limited compared to the centralized cloud. As a result, edge
deployment of computationally expensive DNNs that rely on
high-end accelerators for real-time data analytics becomes
infeasible. One way of dealing with this issue is to optimize
the DNN through techniques including compression, pruning,
quantization, or distillation [23]-[27]. While mitigating the
resource constraint issue, these techniques are typically lossy
especially for complex DNN models, leading to degradation
to the analytics quality, as shown in Figure 1.

The above discussion leads us to ask the following question:
How can we reap the benefits of both cloud and edge com-
puting if neither of them are a silver bullet to real-time video
stream analytics? More specifically, instead of treating them
as exclusive extremes in the solution space, can we achieve
a symbiosis where we combine both the low latency property
of edge computing and the high analytics quality property of
cloud computing? Our goal is to answer this question and to
propose a framework to simplify the process of achieving an
edge-and-cloud symbiosis in applications that are based on
video stream analytics.

C. Leveraging Temporal Correlations

One of the salient features of video streams is that the video
content has a noticeable temporal correlation across video
frames. For example, a human action may span several sec-

action action action

<~ I N800 O A - o,y -0
L1111 11 R

o> MMM AU W §o.7s o
S| 111111 11 g
S 11111111 0.50 &
So Wi W7 i S0 E
g~ I i 5
S g | -0.25
So i

2o 0.00

Fig. 2: The similarity of recognition results between windows
in a video from the PKU-MMD dataset [42], with the distance
between the two windows under comparison varying from 1
to 10 windows.

onds, which is present in all the video frames captured in the
whole action duration. Moreover, the window-based method
for handling motion-based tasks, as discussed in Section II-A,
further enhances this temporal correlation since neighboring
windows can contain a significant number of common frames.
To confirm this observation, we perform the action recognition
task over a set of videos from the PKU-MMD dataset [42]
and calculate the similarity (here we use Cosine similarity)
of the recognition results between two windows with varying
distances (in the number of windows). The results in Figure 2
clearly show that there are high correlations in windows,
even for large distances when the windows fall into the same
context.

Our motivation is to leverage such temporal correlations
in video streams for achieving an edge-and-cloud symbiosis.
The high-level idea is to run an optimized model at the edge
with less accurate results and enhance the results with those
intermittently obtained from a more accurate model running in
the cloud. Thanks to the temporal correlations, we only need to
send a selected subset of frames to the cloud while obtaining
significant analytics quality improvements. This largely relaxes
the bandwidth constraints as in the cloud-based solution.

III. SYSTEM DESIGN

In this section, we present our design of Clownfish, a novel
framework for achieving edge-and-cloud symbiosis for real-
time video stream analytics. We denote by “edge” a small
computing unit (e.g., an NVIDIA Jetson board) co-located at
the video source and by “cloud” a remote data center that is
accessible via the WAN. The goal of Clownfish is to achieve
inference accuracies comparable to the cloud-based solution
even under highly variable conditions on the WAN.

A. Overview

An overview of the Clownfish architecture is depicted in
Figure 3. Clownfish consists of system modules spanning
across both the edge and the cloud. On the edge side, a module
called Window Manager takes the original high-quality video
frames from the video source (e.g., a camera) and converts
the frames into windows, each containing a fixed number of
consecutive frames, as required by the analytics task. The
windows are then fed into two components simultaneously:

Video
source ® Video

% frames Complete
DNN

Selected

E windows
[tocal
Optimized
DNN

Edge JU

Analytics results

Fig. 3: Overview of the Clownfish architecture.

Window size
Window stride
Windows
p—
Frames B Bum Suse Sus Ba Sus S Sae

Time
Fig. 4: Windows generated by the Window Manager with the
window size and the window stride shown.

Local and Filter. The Local module runs an optimized DNN
(called the local model from now on) that meets the latency
and throughput requirements for the underlying analytics task
and outputs the local results for each window. The Filter
module runs a control policy and sends windows selectively to
the cloud. The Remote module deployed on the cloud runs a
complete DNN (called the remote model from now on), which
generally produces more accurate results for the same analytics
tasks than the local model, but it is only applied on the small
set of filtered windows. The remote results (generated by the
remote model) will be sent to the Fusion module. The Fusion
module employs a fusion method to combine the local and
remote results and updates the state of the fusion method upon
receiving a new result record from the Remote.

B. Window Manager

The Window Manager module is responsible for two tasks:
(a) receiving a stream of video frames captured at a fixed frame
rate (e.g., 30 FPS) by the video source and (b) packaging the
received frames into windows. We employ a sliding window
scheme to generate windows where we maintain a working slot
of a fixed size. When new frames arrive, we remove the oldest
frames from the tail of the slot and append the newly arrived
frames to the head of the slot to generate a new window.
There are two parameters, namely the window size and the
window stride, that dictate the efficiency of the sliding window
scheme. As illustrated in Figure 4, the window size decides
how many frames we should keep in a window for one model
run, while the window stride tells how many frames we can
jump over before we generate a new window, i.e., the window
inter-arrival. Deciding these parameters is non-trivial and we
will discuss how to set them up in Section VI.

C. Local and Remote

The Local module (on the edge) takes windows as input
from the Window Manager and runs an optimized DNN for

the analytics task. The optimized DNN can be generated using
the techniques mentioned in Section II-B. Since edge resources
are limited, it is essential to ensure that the optimized DNN
achieves latencies and throughputs that match the application
requirement. Under such a constraint, the DNN with the
highest accuracy should be employed. The Remote module (on
the cloud) runs a complete DNN for the same analytics task,
taking a subset of windows selected by Filter. Unlike Local,
Remote does not impose any latency or throughput constraints
on the window processing. In other words, the results returned
by Remote to the Fusion model can be delayed, intermittent,
or both, depending on the selected DNN.

D. Filter

The Filter module takes windows from the Window Man-
ager as input and decides which windows to send to Remote,
following a pre-configured window filtering policy. More
specifically, we propose a context-aware periodic policy which
periodically sends a window to Remote within the same
context and restarts the periodic timer at the context transition
point. For periodic sending, we set an interval n,, which
represents the number of windows to skip before we send
another window. This interval should be set carefully since a
small n,, will result in high network bandwidth consumption
while a large n,, can lead to poor analytics quality, especially
in short contexts, due to the lack of remote feedbacks. We will
examine the tradeoff on the value selection of n,, in detail
in Section VI-C. Since our policy will also send a window
when a context starts, the context transition point has to be
identified. To this end, we leverage the similarity score where
we consider it is a transition point when the change in the
similarity score is beyond a threshold, i.e., p; — ps—1 > 0.5.

E. Fusion

The Fusion module takes both the local and remote results,
and performs a fusion method to integrate these results. More
specifically, Fusion leverages the temporal correlations across
windows and makes decisions on how much to take from
the current local result and how much to propagate from
the most recent remote result. As we mentioned already, we
define a metric called similarity score to characterize the
temporal correlation between windows and design a small
neural network (with negligible runtime overhead) to derive
this metric at runtime. Based on the similarity score, we apply
an exponential smoothing technique to fuse the results from
the two sources. We detail the design of the fusion method in
the next section.

IV. THE FUSION METHOD

The Fusion module employs a fusion method which aims
to improve the local results with the intermittent help from the
remote model. Since the Fusion module runs on the edge in
parallel to the local model, it is essential that the fusion method
is lightweight such that it does not take too many resources
from the local model. The main motivation behind our fusion
method is that if there is enough temporal correlation in

TABLE I: List of Used Notations

Symbol Description

wi Window at time ¢

pi(t) Local result for wy

pr(t) Remote result for wy

Py (t) Fused result for wy

hs Input video stream rate (frames per second)

hy Throughput of the local model (windows per second)
hy Throughput of the remote model (windows per second)
P Similarity score produced by SimiNet

g(+) Aggregator that combines local and remote results

at Correlation parameter

Bt Accumulative remote influence

Naw Filter interval defined in number of windows

d Lag of the remote result defined in number of windows

the window sequence, which is true for motion-related video
analytics tasks as we have already discussed in Section II-C,
the analytics results on past windows can be used to help with
the analytics for later windows. Similar techniques have been
exploited in time-series forecasting where the current value is
estimated using past, often noisy, observations [43].

A. Fusion with Exponential Smoothing

Our fusion method is based on a variant of exponential
smoothing, which is powerful yet easy to implement. The
analytics result for a window can be represented by a prob-
ability vector which contains predicted probability scores on
a given list of possible targets (e.g., object types for object
recognition or action types for action recognition). We treat
the continuous analytics results as a multi-variate time series
of probability vectors. Exponential smoothing combines past
probability vectors with the current one using a weighted
moving average. Denote by ps (¢t — 1) the fused result for the
past window w;_1 (which is maintained as an internal state of
the fusion method) and by pj(¢) the local result for window
wy. The fused result p(¢) for w; can be calculated as

Pr(t) = apy(t = 1) + (1 — a)pi(t) (1)

where a; € [0,1] is a correlation parameter that decides the
tradeoff between the previous fused result and the current local
result. The value for parameter « is chosen based on the real-
time temporal correlation in the application context.

Now, the question is how to maintain and update the internal
state pr(t — 1), incorporating the remote results denoted by
Pr(t). To relax the bandwidth requirement, we send only
a subset of the windows to the remote model, leading to
intermittent feedbacks from the remote model. The remote
results can also be delayed because of a large network latency
and/or a long processing time of the remote model (which is
more computation-intensive than the local model and may take
more time even if running on high-end accelerators [44]). To
cope with these conditions, our fusion method introduces two
main procedures, namely FUSE and REINFORCE, which take
care of the real-time results fusion and the state update upon
receiving a remote result, respectively.

The FUSE procedure performs real-time fusion by combin-
ing the maintained state py(¢t — 1) and the available result

Filter interval
Remote Dr(t)
REINFORCE
local [l I BE [N BN B0
Stat i i FusE *“)
ate L
(Output) C]— m- Dr(t)
1

|
T T T T T T

t—1 t Time

m Windows processed by both

= Windows processed
the local and the remote

by the local only

Fig. 5: The two main procedures in our fusion method: FUSE
generates output p(t) by combining the current local result
pi(t) with the current state pr(t — 1) using a weighted expo-
nential smoothing function. REINFORCE applies retrospective
updates on the state jy upon receiving the (intermittent and
possibly delayed) remote result p,.

p(t) for the current window w; following the exponential
smoothing technique as just discussed, i.e.,

- (t) o ﬁ(t)a if ¢t =1,)
Prit) = Pyt —1) + (1 — oy)p(t), otherwise,

where p(t) = p;(t) if only the local result p;(¢) for the current
window is available at fusion time. Otherwise, we take the
remote result as input, i.e., p(t) = p,(t), since the remote
result is generally more accurate than the local one. The latter
only happens when the remote model is at least as fast as the
local model, i.e., h; < h,., and the network delay is negligible.

The state p's(t — 1) is periodically updated upon receiving a
remote result. However, this update is retrospective since the
result is most likely for a previous window due to the delay.
Assume at time ¢ we receive the remote result for window
wy—n. We update p'(t — N),...,pr(t — 1) retrospectively to
make sure the state information is properly reinforced by the
remote result. For ¢ € [t — N,t — 1] we apply the following
equation recursively.

o 9(pi(i), pr (i), ifi=t—N,
Py(i) = L oy . 3)
a;pr(i—1)+ (1 —ay)pi(i), otherwise.
For window w;_ we aggregate the local and remote re-
sults using a predefined aggregation function g(-). We use
a weighted average function, one of the simple ensemble
methods used in the area of model ensembling [45]. The
weight parameter of the aggregation function g(-) is chosen
empirically.

Our fusion method assumes the results from the DNN
models to be a probability vector whose elements sum up
to one. This assumption is realistic since, typically, modern
classifiers like DNNs end with a soffmax layer that generates
a normalized probability vector.

B. Estimating Temporal Correlations

The FUSE and REINFORCE procedures in the fusion method
are parameterized with parameter o, which needs to be tuned
according to the temporal correlation between windows w;_1

SimiNet

fn ? I&I"" B o
=)

? RelLU sigmoid Output

(similarity score)
Input

(feature vectors)

1024 1024

Fig. 6: SimiNet architecture. The input concatenates the pair
of feature vectors fi(t — 1) and f;(¢) from two consecutive
windows and is fed into two fully connected hidden layers
each followed by a ReLU activation layer.

and w;. However, it is challenging to obtain the temporal
correlation and decide whether a past remote result should
be propagated through the current window, and if so, what
portion it should take in the fused result at runtime. As we
can observe from Figure 2, the temporal correlation is high
when the context stays the same. Thus, the problem boils
down to determining whether the current context is similar (or
the same) to that of the previous window. From the context
similarity score, we assign the parameter «; accordingly.

Following this idea, we define a context similarity function
which aims to capture the (dis)similarity of contexts based on
information (e.g., the output probability vector or the interme-
diate feature vector) produced by the local model. The intuition
behind this idea is that when the information produced by the
local model for two consecutive windows has a high (low)
correlation, it is very likely that the two windows belong to
the same (different) context(s). Our argument is confirmed in
Figure 8 (especially in the subplot titled SimiNet). If a high
context similarity to the previous window is identified, we
set a relatively large value for ;. This way, the fused result
Pr(t) will have more influence from the previous fused result
Py(t — 1) which likely contains contribution from the remote
model that is expected to be more accurate than the local one.

One simple approach to defining the context similarity
function is to apply traditional similarity measures based on
vector distance functions such as the Euclidean distance or
Cosine similarity directly on the output of the model, i.e.,
the probability vector. However, our empirical studies reveal
a large error with this approach. The main reason is two-
fold: (a) The vector distance of the direct output of the local
model is generally low due to the intra-class variations in
the prediction. Such variations come from the relatively low
accuracy of the local model. (b) The vector distance is not
capable of capturing the subtle differences in the direct output
of the local model. More specifically, the outputs of the local
model for consecutive windows are similar to each other even
when there is a clear context switch due to the large overlap
in the windows that are neighbors to each other.

To overcome these limitations, we use a learning-based
approach incorporating the following ideas: First, instead of
the direct output of the model, we propose to capture the
similarity on the feature vector, denoted by f;(¢), which is

Algorithm 1 Calculation of oy

filt = 1), fi(t)

> Local feature vectors

%) > Threshold, default to 0.5
oy > Correlation parameter
Bt > Cumulative remote influence

1: p < SimiNet(f;(t — 1), fi(t))

2: if B;—1 < 6 then > Apply moving average
3: oy + 0.5

4: else > Apply weighted smoothing
5: Qi <— P

6

DBy B X oy

extracted by the local model as intermediate information.
Second, we propose to leverage a neural network, similar
to the one used in [46], to learn the similarity. Recently,
learning visual similarity using neural networks has been
widely studied in fields like image retrieval [47] and person re-
identification [48]. Our design for the neural network is called
SimiNet and its structure is depicted in Figure 6. We use a
four-layer perceptron which takes a pair of feature vectors
that are generated by the local model on two consecutive
windows, as input. We add a sigmoid function at the end
of the network to produce the final similarity score between
zero (totally different) and one (exactly the same). We train
the SimiNet with pairs of inputs that contain labels zero or
one with binary cross-entropy (BCE) loss function. We will
elaborate on the training process in Section VI-A.

While the SimiNet captures the context similarity accu-
rately, the fusion method should avoid taking a high portion
of the previous fused result if this result does not carry much
influence of the remote model. This can happen when the
result from the remote model is delayed and by the time
we calculate the fused result for a later window the remote
result has not returned yet. To accommodate this situation, we
introduce an indication variable, denoted by f;, to track the
accumulative influence of the remote model in the fused result,
which is calculated based on the following equation.

0, ift =1,
B 1, if p-(¢t) is available, 4)
Bi_1 X oy, otherwise.

Here, we reset the 3; to 1 every time we receive the remote
result, meaning that the influence from the remote model is
maximal. The influence then decreases with the advance of
windows, incorporating the context similarity scores accumu-
latively. In the case that no remote result has been observed,
i.e., B is smaller than a predefined threshold 6, we apply a
standard moving average for the fusion where o, is set to a
predefined value (0.5 in our case). Note that /3, is also updated
retrospectively upon calling the REINFORCE procedure. The
details about o calculation are shown in Algorithm 1.

C. Handling Inaccurate Remote Results

While in general the accuracy of the remote model is higher
than that of the local model, we cannot expect all results from
the remote model to be correct. In the case that an incorrect
result is returned by the remote model, it can be propagated
through the following windows before a new result is received
from the remote model, according to our fusion method design.
This will lead to a cascading effect to the fusion performance,
leading to low accuracy. One straightforward solution is to
discard such incorrect remote results before we integrate them
in the fusion method. However, identifying incorrect results
(often known as uncertainty estimation in deep learning) is an
open challenge [49].

To address this issue, we propose to leverage the confidence
of the model prediction (the maximal value in the softmax
probability vector generated by the model). More specifically,
when we receive a remote result, we apply a predefined
aggregation function g(-) defined in Equation (3) and set £3;
to the confidence of the aggregated result. In this way, the
fused result will be forwarded with a weight that equals the
confidence of the aggregated result. Our intuition is that the
confidence is relatively low when the (remote or local) model
produces incorrect results. This assumption holds in general
for calibrated neural networks [50].

V. IMPLEMENTATION

We implemented a prototype of Clownfish using commodity
devices. Our software implementation is open-sourced. '

A. Hardware Setup

Similar to other work on edge video analytics [8], [20], we
use an NVIDIA Jetson board as the edge node. In particular,
we use a Jetson Xavier board [51] running Jetpack 4.3
(LAT 32.3.1) and equipped with eMMC 5.1 flash storage. The
Jetson Xavier board includes a low-power mobile GPU and is
suitable for massive edge deployment. We use a commodity
server running CentOS-7.4 and equipped with Intel Xeon CPU
E5-2630v3, 64 GB RAM, and NVIDIA RTX 2080Ti as the
cloud node in our system. The edge and cloud nodes are
connected using a local area network and we emulate different
network conditions on this connection.

B. Software Implementation

The two DL model serving modules in Clownfish, i.e.,
Local and Remote, are implemented as standalone software
components and their communication with the other modules
in Clownfish is handled by gRPC [52]. This decoupling
enables the flexibility of changing the DL models in different
scenarios. We use Pytorch (v1.4.0) to perform the training and
inference of the DL models used in the two modules.

The system is implemented as follows: We emulate a camera
on the edge side by reading JPEG-formatted video frames pre-
extracted from a video file with frame rate of 30 frames per
second (FPS). We use the Python imaging library Pillow to

Uhttps://github.com/vuhpdc/clownfish

read video frames from the flash storage. The eMMC flash on
Jetson Xavier supports a high frame reading throughput (up to
1100 FPS) and thus, the frame reading latency is negligible.
Once a frame window is formed, Clownfish encodes the
window with PNG encoding, serializes the encoded window
using protocol buffers, and makes a blocking gRPC call to
the Local module running in a separate process. The Local
module, upon receiving the gRPC call, decodes the frames
from the window, processes them, and executes the local DL
model on the GPU with Pytorch. For windows selected by the
Filter module, Clownfish keeps a window queue and initializes
a separate process to handle the windows in the queue by
issuing non-blocking gRPC calls to the Remote module across
the network. Note that overlapping frames across windows are
processed once to avoid duplicate computation. The cloud side,
upon receiving a frame window via a gRPC call, decodes the
frames, processes them, and feeds them into the remote DL
model running on the GPU with Pytorch.

Our fusion method is lightweight with respect to both
computation and memory consumption. Memory consumption
mainly comes from two parts: (1) the current window of a fixed
number (i.e., window size) of frames and (2) the internal state
information, including the result vectors and similarity scores
for past d (the lag value) consecutive windows. We anticipate
the memory consumption in both cases to be bounded and
low, which is unlikely to become a bottleneck on resource-
constraint edge devices.

VI. PERFORMANCE EVALUATION

In this section, we carry out extensive experiments to
evaluate the performance of Clownfish. Our experiments aim
to answer the following questions:

Q1 To what extent does our similarity-based fusion method
improve the inference accuracy?

Q2 How do the filter interval and lag affect the inference
accuracy and bandwidth reduction in Clownfish?

Q3 How does Clownfish perform under variable network
conditions in real-world scenarios?

Q4 How well does Clownfish perform when compared with
existing filtering-based approaches?

A. Experimental Setup

We choose the action recognition task in computer vision
as a representative workload for Clownfish and all our exper-
iments will be performed with this task.

Datasets. We evaluate our system on a popular action recogni-
tion benchmark called PKU-MMD [42], which contains long
sequences of video frames with 51 action categories in total.
The videos were captured using the Kinect v2 sensor in three
camera views (left, right, and center). Each video runs for three
to four minutes when played at 30 FPS, and contains multiple
(around 20) action instances interleaved with backgrounds and
performed by 66 subjects. The median value of the duration
of action instances is 3.3 sec. The dataset contains two phases
with large- and small-margin detection tasks, respectively.
We specifically use the first phase which contains 1076 long

videos. Following the cross-subject evaluation defined in [42],
these videos are further split into training and testing sets
with 994 videos by 57 subjects and 132 videos by 9 subjects,
respectively, with a mix of different camera views.

DL models and training. For action recognition, we choose 3-
dimensional convolutional neural networks (3D-CNNs) which
have shown promising results in extracting spatio-temporal
(i.e., appearance and motion) features from videos [53], [54].
More specifically, we adopt 3D residual networks of two
different types, i.e., 3D ResNet-18 (smaller) with shortcut
connections of type A and 3D ResNext-101 (larger) with
shortcut connections of type B [55], to be used as the local
and the remote model, respectively.

We take models that are pre-trained on the Kinetics dataset
and fine-tune them on the PKU-MMD dataset for various
spatial sizes (e.g., 224 x 224 x 3) and temporal lengths (e.g., 16
frames) using the publicly available codebase? of 3D-ResNets
[54]. We fine-tune the last two layers of the models, namely
conv5_x and fc. For a fair comparison, we train all the models
for the same number of iterations. It is non-trivial to choose
the optimal values for the hyper-parameters in order to obtain
the best performance of a model. Note that our goal is not
to improve the accuracy of individual models but to verify
the effectiveness of the fusion method. Therefore, we use
default values for most of the hyper-parameters (e.g., SGD
optimizer with learning rate 0.1, momentum 0.9, and weight
decay 0.001) unless specified explicitly. In addition, models
are trained only on those portions of a video that contain a
class category (i.e., an action) in the ground truth. We use
data augmentation techniques similar to the ones defined in
the codebase, i.e., data normalization by mean, multi-scale
random cropping from corners and center, random horizontal
flip, and temporal random cropping for variable-length clips.
During testing, we apply resizing, center cropping, and data
normalization to the input data.

SimiNet training. We train SimiNet in Clownfish as a binary
classification task where the sigmoid output of the network
denotes the probability score of a default (in our case, sim-
ilarity) class. We generate training samples of ordered pairs
to the network as follows: For every semantically valid and
variable-length context, denoted by C}, in a training video,
we take a fixed (e.g., twice the window size) number of
frames immediately preceding this context, denoted by C;_1.
The ordered pairs (C;—_1, C;) and (C, C}) constitute two
different training samples with ground truth labels zero (totally
different) and one (exactly the same), respectively. For every
element C'; in an ordered pair, the corresponding feature vector
ﬁ (t) is extracted from the local model. Before passing input
to the local model, we apply data augmentation techniques
mentioned before. Note that the data augmentation technique
named temporal random cropping, i.e., randomly selecting
the start frame of an input, may generate different input
combinations from an ordered pair. In addition, we use the
SGD optimizer with a learning rate of 0.001, momentum 0.9,

Zhttps://github.com/kenshohara/3D-ResNets-PyTorch

and weight decay 0.001. We train the model for 100 epochs
with the batch size of 16.

Parameter settings. For all our experiments, we adopt the
value of window size and window stride to be 16 and 4,
respectively. We set the window size primarily based on the
following three principles: (a) The input size of the temporal
dimension of 3D networks is typically set to 16 frames
[54], [56], [57], which is sufficient to capture most temporal
patterns. (b) Contexts of lengths smaller than 16 frames (about
half a second long) can be detected, assuming the result of
the window is influenced by the majority of the frames in the
window. (c¢) Smaller window sizes result in a lower amount
of data transfer per window and faster feedbacks from the
remote, which is critical in reducing bandwidth consumption
and improving fusion performance, respectively. Similarly,
we set the value for window stride to 4 (i.e., 75% overlap
between consecutive windows) according to the speed of the
local model (ResNet-18 in our case). The end-to-end inference
latency of the local model is around 125 ms for window size
16. Therefore, the local model can process around 8 windows
per second, when executed sequentially. In general, we expect
the window stride to be as small as possible for better model
accuracy due to denser sampling, but it is lower bounded by
max{1, [hs/h;]} where hy is the input frame rate and h; is
the throughput of the local model. We leave a detailed analysis
of the impact of sliding window parameters on the accuracy
and bandwidth as future work.

We use a spatial frame size of a window of 171 x 128 x 3,
which requires the network bandwidth to be around 8 Mbps
after the PNG encoding for supporting 30 FPS. We set the
value of filter interval n,, to be 6 unless specified explicitly,
which can provide bandwidth reduction of up to 33% for the
aforementioned sliding window parameters. In addition, we
skip the first 8 frames of every context in accuracy calculation,
because the label assigned to those frames could be from the
previous context (i.e., the majority of frames in the window
belongs to the previous context). For weighted aggregation
function g(-) that aggregates the remote and local result, we
use a weighted sum where we assign a weight of 2/3 to the
remote result to leave a weight of 1/3 to the local result.

B. Performance Metrics

To measure the performance of our system, we use four
different types of metrics described below.

Accuracy is defined as the fraction of correctly predicted
frames (i.e., windows starting from each of these frames)
out of the total number of frames that contain an action.
We mark frame as true positive when the top-1 label
matches the ground-truth label of the action context.

Weighted F1 score is a harmonic mean of the precision
and the recall. This metric takes into account the label
imbalance by considering the weight of each label, i.e.,
the number of true samples for each label.

Throughput is the total number of frames processed (for
inference) per second by our system. This takes into
account the amortized (frames that are skipped due to the

—— Remote - Local —e— SimiNet +— Cosine —4— FixMA —A— OptSim
Bandwidth reduction

Lag =1 Lag=2 Lag=4 upper-bound
625 62.5 2 62.5 2 62.5 g oo —— 2P)
3 e
> 60.0 60.0 60.0 60.0 A
8 <40 A
€575 575 575(ey S be e | 575 s v
Q RSy 2 /
§ 55.0 55.0 55.0 e g0yl 55.0 e 82 ¥
& 525 52.5 52.5 52.5{ -0 03
I9 """"""""""""" 0 +—+—-+——4/

50.0 50.0 50.0 50.0

12345678910
Filter interval

12345678910
Filter interval

12345678910
Filter interval

12345678910
Filter interval

12345678910
Filter interval

Fig. 7: Accuracy comparison between different fusion methods under varying filter intervals and lags and the bandwidth
reduction achieved in the fusion methods under varying filter intervals.

Euclidean

Bhattacharya

-
N
o

8?
mLD

T o

>~
[ee]
[}
o
Q

=N |

20 0 5 10 15
Consecutive windows

Cosine SimiNet
NN NEER HR
-0.8
2
065
€
04 %
-0.2

|
5 10~.15 20 0 5-710

Transition points

Fig. 8: Similarity scores generated by different similarity functions in 10 videos from the PKU-MMD dataset. The values for
the Euclidean function represent the normalized values between 0 and 1 by assuming the maximum value is /2.

sliding window scheme have negligible inference time)
end-to-end inference time which includes the encoding
time of a window, network round-trip time to send
the window and receive the inference result, window
preprocessing, and the model execution time.

Bandwidth reduction is the amount of WAN traffic reduced
by our system compared to the WAN traffic in the cloud-
based system provided that both systems in comparison
operate at the same throughput level.

C. Effectiveness of the SimiNet-based Fusion Method

We first evaluate the performance of SimiNet and examine
the effectiveness of our SimiNet-based fusion method. In
particular, we show how well SimiNet can capture the context
similarity in videos and how SimiNet contributes to the overall
inference performance of the fusion method in Clownfish
under various scenarios.

Figure 8 shows the similarity scores captured by SimiNet in
comparison with several other popular functions for similarity
characterization on 10 videos from the PKU-MMD dataset.
Each of the videos contains a transition point in the middle
where the windows before the transition point contain no
actions (except the first 5 windows in the 4th video) and the
windows after the transition point contain a valid action. As we
can see, SimiNet distinguishes the transition point clearly by
generating lower similarity scores around the transition point
and higher similarity scores for the windows with the same
action as expected. The other similarity functions are only

able to detect the transition points in very few videos. This
comparison demonstrates that our learning-based SimiNet is
more effective in characterizing the context similarity in videos
than existing functions.

We now evaluate the accuracy of our SimiNet-based fusion
method under different filter intervals n,, and lags d defined
as the delay of receiving the remote feedback measured in
number of windows. The case with lag d = 0 stands for an
ideal case where there is no delay in receiving the remote
results. We compare our SimiNet-based method with three
other fusion methods namely Cosine, FixMA, and OptSim.
The Cosine method assigns parameter «; in Equation (1)
using the Cosine similarity score. The FixMA method sets the
parameter oy to a constant 0.5. The OptSim method represents
the ideal case where parameter ay is set according to the
similarity ground truth, i.e., 1 for the same action and 0
otherwise. Note that OptSim can only be achieved in theory
since the ground truth is unknown beforehand in practice.

Figure 7 depicts the accuracy comparison results under filter
intervals n,, € [1,10] and lags d = 0,1,2,4. It can be
observed that our SimiNet-based fusion method performs
close to the remote model and the accuracy gap is around
2% in almost all cases (Q1). The SimiNet is also effective
as the overall accuracy with SimiNet is close to that with
OptSim. Our SimiNet-based fusion method outperforms all
other methods by a large margin most of the time. In general,
the performance of our method is stable even under large
filter intervals and large lags (Q2).

—— Remote —e— SimiNet —4— FixMA

----- Local Cosine —A— OptSim
625 Lag=2 625 Lag=4
360.0]a 60.0
So75(+ oo o—ea o, s 575 by
§55.0 L S e & [NV) R e i S SESTRS .o o
- 525 52.5 ‘*“H—O—Q—Q——;—Q——;
g.S0,0
= 12345678910 123456738910

Filter interval Filter interval

Fig. 9: Accuracy achieved by our proposed fusion method
with 3D MobileNet v1 as the local model under varying filter
intervals and lags.

The rightmost plot in Figure 7 depicts the bandwidth
reduction when facing different filter intervals in our method.
Note that the bandwidth reduction can only be observed
with filter intervals n,, > 4, i.e., when the filter interval
is greater than the ratio between the window size and the
window stride. Although the overall accuracy drops gradually
with the increase of the filter interval as expected (due to
less remote feedbacks), the bandwidth reduction increases
substantially. For example, for lag d = 2, the accuracy drops
from 57.93% to 57.50% when we increase the filter interval
from 6 to 7, while the bandwidth reduction increases from
33.33% to 42.86%. Overall, our fusion method can achieve
substantial bandwidth reduction with a limited penalty on
the inference accuracy (Q2), being less dependent on the
available network bandwidth.

We observe that the accuracy of the SimiNet-based fusion
method is better than the accuracy of the remote model in
some cases, especially when the values for n,, and d are low.
We attribute this gain to the weighted moving average which
aggregates results across windows. This is confirmed by the
fact that the moving average method can also help improve
the accuracy of the local and remote models. We will discuss
it in more detail in Section VI-F.

Additionally, we report the applicability of SimiNet archi-
tecture to other types of local models. To this end, we fine-
tune 3D MobileNet v1 (pre-trained on the Kinetics dataset) on
PKU-MMD dataset following the training strategy proposed in
[58]. We then train SimiNet on the feature vectors generated
by the 3D MobileNet, following the training strategy stated
in Section VI-A. Figure 9 depicts the accuracy comparison
with varying filter intervals and under lags d = 2,4. As we
can see that the observation presented in Section VI-C, i.e.,
SimiNet-based fusion method outperforms other methods by
a large margin and is close to the OptSim, still holds. This
confirms the generality of SimiNet.

To further test the effectiveness of our approach, we eval-
uated the fusion method also with a different dataset split
method called cross-view split defined in [42]. In cross-view
split, the PKU-MMD dataset is split into 717 training videos
with left and right camera views, with 359 testing videos with
center view. According to [42], cross-view evaluation aims to
test the robustness of the models in terms of transformation

10

—o— SimiNet
Cosine

—— Remote
Local

—4— FixMA
—A— OptSim

Lag =2

Lag =4

65.0
62.5
| 60.0
57.5

55.0
12345678910
Filter interval

123456782910
Filter interval

Fig. 10: Accuracy achieved by our proposed fusion method
on cross-view split.

[}
[3,]

B Latency (3 ms)
E== Latency (13 ms)
N Latency (153 ms)
58.27 58.27

60

[$)]
[3,]

Top-1 accuracy (%)

50

Edge-only Clownfish Cloud-only

Fig. 11: Accuracy achieved by Clownfish under different
network latencies compared with the edge- and cloud-only
solutions.

TABLE II: Weighted F1 scores under varying network condi-
tions (left: varying latency, right: varying bandwidth).

Solution F1 (%) \ Solution F1 (%)
Edge-only 50.58 | Edge-only 50.36
Clownfish (3 ms) 58.33 | Clownfish (5 Mbps) 56.15
Clownfish (13 ms) 58.34 | Clownfish (7.5 Mbps) 56.51
Clownfish (153 ms) 57.18 | Clownfish (No shaping) 58.59
Cloud-only 59.68 | Cloud-only 59.13

(e.g., translation, rotation). In contrast, cross-subject evaluation
aims to test the intra-class variation among different actors.
Figure 10 depicts the accuracy with varying filter interval
values following the same training strategy and models used in
the cross-subject evaluation. Similar to the above observations,
our fusion method outperforms other methods by a significant
margin. Note that the accuracy of individual models is higher
in cross-view evaluation, consistent with the evaluation results
mentioned in [42].

D. Impact of Network Latency

We evaluate the performance of Clownfish in real-world
scenarios with varying network latency conditions. In par-
ticular, we compare Clownfish with the edge- and cloud-
only solutions in terms of accuracy (together with weighted
F1 score) and throughput. The edge-only solution runs the
ResNet-18 model, while the cloud-only solutions runs the
ResNext-101 model. For the experiments with varying latency
conditions, we choose to use all 132 testing videos in the
dataset to report the accuracy and the weighted F1 score.

[«2]
[3,]

B Bandwidth (5 Mbps)
E== Bandwidth (7.5 Mbps)

60 BN Bandwidth (No shaping)

56.69 27.09

0
(3]

Top-1 accuracy (%)

a
o

Edge-only

Clownfish Cloud-only

Fig. 12: Accuracy achieved by Clownfish under different
bandwidth shaping conditions compared with the edge- and
cloud-only solutions.

Figure 11 shows the accuracy achieved by Clownfish un-
der varying network latency conditions. We choose three
realistic network latency conditions, i.e., 3 ms, 13 ms, and
153 ms, which are deduced from the average latencies we
measured for a local-area (within Amsterdam), inner-continent
(Amsterdam-Frankfurt), and inter-continent (Amsterdam-W.
California) connection from the Jetson board to an Amazon
cloud server, respectively. We emulate these latency conditions
on our prototype using the netem tool. We put no limits on the
network bandwidth and ensure the network bandwidth is not a
bottleneck. It can be observed that the accuracy of Clownfish
under latencies of 3 ms and 13 ms are almost the same, and
more than 96% of remote results are returned within the lag
d = 1. However, with network latency of 153 ms, the network
latency contributes to the end-to-end delay significantly, lead-
ing to 5.2%, 53.2%, and 39.5% of remote results to be returned
with lags of 2, 3, and 4, respectively. In general, Clownfish is
able to maintain a stable accuracy performance and performs
close to the cloud-only solution in all cases. The weighted F1-
scores shown in Table II (left) reveal similar trends. Overall,
network latency has a negligible impact on the achieved
accuracy of Clownfish (Q3).

E. Impact of Network Bandwidth

We explore the performance of Clownfish under varying
network bandwidth conditions. To emulate the bandwidth
variation, we follow the traffic shaping experiment (including
the bandwidth control values) similar to the one used in
AWStream [39] that targets the wide area. We use the Linux tc
utility to control the uplink bandwidth from edge to cloud. For
the experiment, we pick 12 videos from the testing videos in
the dataset, with equal numbers of videos in each camera view
category, namely left, right, or centre. We run experiments in
the following order: the first three videos with no bandwidth
shaping (A), the next three videos with 7.5 Mbps bandwidth
limit (B), the next three videos with 5 Mbps limit (C), and
the last three videos again with no shaping (A). We collect
throughput statistics every 5 sec. The z-axis in Figure 13
depicts the approximate time sequence.

Figure 12 depicts the accuracy of Clownfish on the 12
videos under different network bandwidth conditions. As

11

5 Edge-only Clownfish Cloud-only
a A B C A A B C A A B C A
< 40 { ——+———+—i 40 { ——+———+—| 40 { —+——F———+—
3 30 | wmmanemamttiv=en | 3() | we — opmapaprengenas | 3() "F""u-\.‘ ot

o I

320 20 20 i

£ 10 10 10

o n n o o o o wn o o o wn

n o) o m n ()] ~ ~ n o) o (&)

< 0 < o N <t O <

~ ~ —

Time (sec) Time (sec) Time (sec)

Fig. 13: System throughput (FPS) under different bandwidth
conditions (A: no shaping, B: 7.5 Mbps, C: 5 Mbps).

g 1.00
S 0.75 EZ2 No shaping
g E= 7.5 Mbps
3 0.50 BN 5 Mpbs
N
T 0.25
2 0.00 —=
1 2 3 4 5 6 7 8 9 10

Lag (in number of windows)

Fig. 14: Distribution of lags of remote feedbacks under varying
network bandwidth conditions.

expected, Clownfish always performs close to the cloud-
only solution and outperforms the edge-only solution to a
large extent. However, we observe a slight accuracy decrease
with the decrease of the network bandwidth. The accuracy
degradation is due to the increase of lags of the remote
feedbacks, as clearly shown in Figure 14. This lag increase
is caused by the longer time required to transmit the original
frame data under lower bandwidth.

Figure 13 depicts the throughput results of Clownfish in
comparison with the edge- and cloud-only solutions. The
throughput of the edge-only solution remains almost constant
(around 31 FPS) since the network is not involved. The cloud-
only solution, however, suffers from poor throughputs when
the network bandwidth is lower than the required bandwidth
(7.5-8 Mbps in the considered scenario). In particular, the
throughput drops to two-third of the expected throughput, i.e.,
30 FPS when the bandwidth is limited to 5 Mbps. This con-
firms that the cloud-only solution will not be able to maintain
stable throughputs under varying network bandwidths, which
are typical on the WAN. Despite the bandwidth variation,
Clownfish always maintain a stable throughput thanks to
hybrid design, where the throughput is dictated by the local
model while the remote model is only used for accuracy
improvements. Overall, Clownfish is able to maintain stable
throughputs as the edge-only solution and achieve accu-
racies as high as the cloud-only solution under varying
network bandwidth conditions (Q3).

FE. The Power of Leveraging Temporal Correlations

To further demonstrate the power of leveraging temporal
correlations as done in Clownfish, we apply the fixed moving
average (FixMA) following Equation (1), with parameter oy
set to 0.5, on the results obtained by the local and remote

TABLE III: Accuracy comparison with fixed moving average
applied on the edge- and cloud-only solutions.

Solutions Accuracy (%) F1 (%)
Edge-only 50.93 50.58
Edge-only (+ FixMA) 52.54 52.11
Clownfish (13 ms) 58.27 58.34
Cloud-only 59.22 59.68
Cloud-only (+ FixMA) 61.50 61.99

models. Table III shows that both the local and remote models
benefit from FixMA where the accuracy is improved by around
2%. Even though the advantage of Clownfish against the edge-
only solution is obvious, the accuracy of Clownfish remains
comparable to that of the cloud-only solution with FixMA.

G. Comparison with Existing Approaches

We compare Clownfish with the existing filtering-based
approach, where irrelevant frames are identified and discarded
before being sent to the cloud for processing. This approach
has been used for object recognition in EarlyDiscard [40] and
FilterForward [59].

To adapt the filtering-based approach for action recognition,
we train a 3D version of MobileNet V1 to discard irrelevant
windows (instead of frames in EarlyDiscard). This is because
discarding frames using 2D MobileNet V1 does not consider
the motion features which are important for action recognition.
We fine-tune the last classifier layer of 3D-MobileNet V1
(pre-trained on the Kinetics dataset) similar to the training
process proposed in [58] but for the binary classification task.
We conduct our experiments on the 12 videos used in the
bandwidth shaping experiments. We set the cutoff threshold
of the binary classification to 0.5 as done in EarlyDiscard to
achieve high recall (over 0.9).

With the above setup, the filtering-based approach achieves
an overall accuracy of 55.48%, which is lower than the cloud-
only solution (58.98%) but is considerably higher than the
edge-only solution (51.16%). The fraction of frames sent to
the cloud per video is between 44.10% to 76.31% where the
fraction of relevant frames (with actions) is between 30.15%
and 53.40%. Compared with Clownfish, the accuracy of the
filter-based approach is still worse.

Figure 15 shows the throughput performance of the filtering-
based approach under varying network bandwidth conditions.
We consider two scenarios with no bandwidth shaping and
shaping with a limit of 5 Mbps and perform the experiments
on the video named 0316-R, which has around 64% of relevant
frames. Due to the performance limit of 3D MobileNet (with
a latency of around 148 ms), the theoretical throughput of
the filtering-based approach is around 26 FPS, which is lower
than the expected throughput of 30 FPS. As we can see
from Figure 15 that when no bandwidth limits are imposed,
the filtering-based approach can maintain a relatively stable
throughput close to the theoretical optimal. However, when the
bandwidth is limited, the throughput drops to 20 FPS most of
the time due to the large latency in transmitting the relevant
frames, which are still significant in number.

12

= No shapin 5 Mbps

9 40 ping 40 P

*

230 _______ Rl mintt Bk shele 30 N N Iy l\\ 4 I'\ I
%‘20 201 Ny \,l ‘\Vl' AR TR
£10 10

= 50 65 80 95 110 125 50 75 100 125 150 175

Time (sec) Time (sec)

Fig. 15: Throughput of the filtering-based approach under
varying network bandwidth conditions.

Overall, Clownfish outperforms the filtering-based ap-
proach with respect to both accuracy and throughput
(Q4). Nevertheless, filtering-based approach can be made
complementary to Clownfish where irrelevant frames (or win-
dows) are identified and discarded to further reduce bandwidth
consumption in Clownfish. We leave such a mixed approach
for future work.

VII. RELATED WORK

A. Computation Offloading for Video Stream Analytics

Computation offloading has been extensively explored in
the context of mobile computing [60], [61]. The focus is
mainly on providing runtime support for offloading parts of
monolithic mobile applications to a cloud or a nearby server
with the objective of minimizing application execution time or
mobile energy consumption. Recently, similar ideas have also
been applied to video stream analytics workloads [6]—[8], [40],
[62]-[65]. Modern video stream analytics workflows typically
leverage complex DNN models for computer vision tasks such
as object or action recognition, and the DNN models can be
offloaded to and edge/cloud server partially or as a whole.

Most solutions to computation offloading for video stream
analytics focus on network bandwidth or latency issues. Jet-
Stream addresses the bandwidth variation issue through data
quality adaptation [36]. AW Stream pushes this solution further
and allows the adaptation of the DNN models to achieve
the best tradeoff between analytics accuracy and latency in
video stream analytics [7]. Filtering-based approaches such as
EarlyDiscard [40] and FilterForward [59] employ a filtering
technique at the edge to discard the context-irrelevant frames
and send only the relevant frames to the cloud for processing.
CloudSeg employs the super-resolution technique where low-
resolution frames are sent to the cloud, which are reconstructed
into high-resolution ones for further analytics [64]. Similar
to Clownfish, Glimpse [62] adopts a hybrid design where
the object recognition task is offloaded to the (edge) cloud.
Glimpse proposes a local tracking approach based on light-
weight optical flow calculation to combat the network latency
issue. Clownfish takes a fundamentally different approach
where the local edge device is used for actual analytics tasks
while the cloud is used for result reinforcements. In addition,
Clownfish is generally applicable to a variety of analytics tasks
with temporal correlations, while Glimpse only targets object
recognition.

Another line of research proposes to split the DNN model
for video stream analytics and execute partially on the edge
and on the cloud [65]-[67]. While achieving lower latency
in general, these methods only work for certain DNN models
and still struggle to provide real-time performance especially
when the network bandwidth is limited [66].

B. DNN Optimizations for Edge Deployment

Recently, there has been a significant amount of work on
making DNN models more compact, generally know as model
compression, to enable their deployment on resource con-
strained edge devices. Popular model compression techniques
such as pruning, quantization, and knowledge distillation [23]-
[27] have shown encouraging results on simple tasks such
as image classification. However, such techniques generally
suffer from accuracy degradation. On the other hand, models
are becoming increasingly larger. For example, the recent
NLP model GPT-3 has around 175 billion parameters making
it impossible to deploy it on edge devices even after the
aforementioned techniques. With our hybrid design, one can
deploy the optimized and specialized DNNs produced using
model compression techniques and periodically take help from
the large original models. Leite et al. [68] proposed an efficient
solution for activity recognition on mobile devices by using
an LSTM-based architecture to model inter-window temporal
context and avoid overlapping computation in sliding window
schemes. This approach is complementary to our work.

VIII. D1SCUSSION AND FUTURE WORK

In this section, we discuss some of the challenges, optimiza-
tions, and future work on Clownfish.

Our idea of aggregating the remote and local results is
inspired by the model ensemble approach, where the analytics
results of multiple models are combined to give better and
more robust results than the individual models. We used a
linear weighted average function as our aggregation function,
and empirically selected the value of the weight parameter.
However, there are many methods, including exhaustive grid
search, estimation algorithms such as linear regression, to
estimate the optimal weights. It is also worth exploring the
more advanced aggregation methods such as boosting or
stacking [45].

Currently, the Clownfish evaluation uses a fixed value for the
filter interval in the fusion method. Given the application band-
width requirement for a window, available network bandwidth,
and the end-to-end network latency (i.e., lag), the fixed value
can be determined by examining the trade-off curve between
accuracy and bandwidth reduction (similar to Figure 7) plotted
using training or holdout validation dataset for different filter
intervals. However, such a fixed value might be suboptimal
in variable network conditions. An adaptive approach where
the filter interval is set based on the current network condition
will help improve the overall accuracy of the fusion method.

Clownfish is only able to employ temporal correlations
within the same context (e.g., same action). At context tran-
sition points (action-to-action or background-to-action), our

13

framework will generate a low correlation (similarity) score,
which significantly reduces the influence of the wrong remote
result (that belongs to a previous context) on the current
context. However, it would be interesting to see if inter-context
correlations can also be explored and incorporated.

Model optimization or compression techniques may de-
grade the accuracy of the DL model depending upon the
model architecture, hardware platform, compression method,
and compression ratio [28]. In such a scenario, employing
Clownfish and aggressive optimization methods will further
improve the accuracy of the optimized model at a minimal
cost of network bandwidth.

IX. CONCLUSION

We presented Clownfish, a hybrid real-time video analytics
framework that achieves edge-and-cloud symbiosis to reap
the benefits of both the edge (fast response) and the cloud
(high accuracy). Clownfish exploits the temporal correlations
in the video content and uses a learning-based approach to
characterize the temporal correlation with a similarity score
metric. Clownfish then employs an effective fusion method
based on the exponential smoothing technique for fusing the
analytics results from the optimized model running on the
edge and the intermittent and possibly delayed results from
the complete model running in the cloud. Our evaluation
confirms that Clownfish can always operate in real time as the
edge-only solution and achieves comparable accuracy with the
cloud-only solution even in high network latency and varying
network bandwidth conditions.

X. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and
our shepherd Mi Zhang for their valuable comments and
suggestions. We would also like to thank Benno Kruit and
Leonardos Pantiskas for proofreading the paper. This work is
part of the Efficient Deep Learning (EDL) programme (grant
number P16-25), financed by the Dutch Research Council
(NWO). Part of the work was carried out on the NWO-funded
DAS-5 cluster.

REFERENCES

[1] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017, pp. 377-392.

G. Ananthanarayanan, V. Bahl, L. P. Cox, A. Crown, S. Nogbahi, and
Y. Shu, “Video analytics - killer app for edge computing,” in ACM
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2019, pp. 695-696.

C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl,
and M. Philipose, “Videoedge: Processing camera streams using hierar-
chical clusters,” in IEEE/ACM Symposium on Edge Computing (SEC),
2018, pp. 115-131.

G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: an in-vehicle,
edge-based video analytics service for detecting open parking spaces
in urban environments,” in ACM/IEEE Symposium on Edge Computing
(SEC), 2017, pp. 16:1-16:14.

S. Jain, V. Nguyen, M. Gruteser, and P. Bahl, “Panoptes: servicing multi-
ple applications simultaneously using steerable cameras,” in ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), 2017, pp. 119-130.

[2]

[3]

[4]

[5]

—_
[=))

]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in ACM Special
Interest Group on Data Communication (SIGCOMM), 2018, pp. 253—
266.

B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: adaptive wide-area streaming analytics,” in ACM Special
Interest Group on Data Communication (SIGCOMM), 2018, pp. 236—
252.

J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai, S. Yang, and
M. Satyanarayanan, “Bandwidth-efficient live video analytics for drones
via edge computing,” in IEEE/ACM Symposium on Edge Computing
(SEC), 2018, pp. 159-173.

S. Y. Jang, Y. Lee, B. Shin, and D. Lee, “Application-aware iot
camera virtualization for video analytics edge computing,” in IEEE/ACM
Symposium on Edge Computing (SEC), 2018, pp. 132-144.

H. Sun, X. Liang, and W. Shi, “Vu: video usefulness and its application
in large-scale video surveillance systems: an early experience,” in I[EEE
Workshop on Smart Internet of Things (SmartloT@SEC), 2017, pp. 6:1—
6:6.

R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” CoRR,
vol. abs/2006.09628, 2020.

T. Abdullah, A. Anjum, M. F. Tariq, Y. Baltaci, and N. Antonopoulos,
“Traffic monitoring using video analytics in clouds,” in I[EEE/ACM
International Conference on Utility and Cloud Computing (UCC), 2014,
pp. 39-48.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58-67,
2017.

B. Luo, S. Tan, Z. Yu, and W. Shi, “Edgebox: Live edge video analytics
for near real-time event detection,” in IEEE/ACM Symposium on Edge
Computing (SEC), 2018, pp. 347-348.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
AAAI Conference on Artificial Intelligence (AAAI), 2017, pp. 4278-4284.
V. Veeriah, N. Zhuang, and G. Qi, “Differential recurrent neural net-
works for action recognition,” in IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 4041-4049.

K. Simonyan and A. Zisserman, ‘“Two-stream convolutional networks
for action recognition in videos,” in Annual Conference on Neural
Information Processing Systems (NIPS), 2014, pp. 568-576.

S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, 2013.

H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: a GPU cluster engine for accelerating
dnn-based video analysis,” in ACM Symposium on Operating Systems
Principles (SOSP), 2019, pp. 322-337.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in ACM Annual International Conference
on Mobile Computing and Networking (MobiCom), 2019, pp. 25:1-
25:16.

S. Biswas, J. C. Bicket, E. Wong, R. Musaloiu-E, A. Bhartia, and
D. Aguayo, “Large-scale measurements of wireless network behavior,”
in ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), 2015, pp. 153-165.

A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and
M. Welsh, “Mobile network performance from user devices: A longitudi-
nal, multidimensional analysis,” in International Conference on Passive
and Active Measurement (PAM), vol. 8362, 2014, pp. 12-22.

X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. S. Huang, H. Shi, W. W. Hwu, and D. Chen, “Skynet: a hardware-
efficient method for object detection and tracking on embedded sys-
tems,” in Conference on Machine Learning and Systems (MLSys), 2020.
M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” in Conference on Machine Learning and Systems (MLSys),
2020.

Y. Zhou, S. Moosavi-Dezfooli, N. Cheung, and P. Frossard, “Adaptive
quantization for deep neural network,” in AAAI Conference on Artificial
Intelligence (AAAI), 2018, pp. 4596-4604.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A
systematic DNN weight pruning framework using alternating direction

14

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

method of multipliers,” in European Conference on Computer Vision
(ECCV), vol. 11212, 2018, pp. 191-207.

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126-136,
2018.

S. Y. Jang, Y. Lee, B. Shin, and D. Lee, “Application-aware iot
camera virtualization for video analytics edge computing,” in IEEE/ACM
Symposium on Edge Computing (SEC), 2018, pp. 132-144.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58-67,
2017.

Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. S.
Huang, “Large-scale image classification: Fast feature extraction and
SVM training,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011, pp. 1689-1696.

D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012, pp. 3642-3649.

Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436444, 2015.

B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time action
recognition with enhanced motion vector cnns,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2718-
2726.

TFLite hosted models, https://www.tensorflow.org/lite/guide/hosted_
models, (Accessed on June 16, 2020).

A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014, pp. 275-288.

“Cisco annual internet report (2018-2023) white paper,” https:
/Iwww.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning ap-
proaching LAN speeds,” in USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 629-647.

B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: adaptive wide-area streaming analytics,” in ACM Special
Interest Group on Data Communication (SIGCOMM), 2018, pp. 236—
252.

J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai, S. Yang, and
M. Satyanarayanan, “Bandwidth-efficient live video analytics for drones
via edge computing,” in I[EEE/ACM Symposium on Edge Computing
(SEC), 2018, pp. 159-173.

M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
puter, vol. 50, no. 1, pp. 30-39, 2017.

L. Chunhui, H. Yueyu, L. Yanghao, S. Sijie, and L. Jiaying, “Pku-mmd:
A large scale benchmark for continuous multi-modal human action
understanding,” arXiv preprint arXiv:1703.07475, 2017.

R. G. Brown, “Smoothing, forecasting and prediction of discrete time
series,” 1962.

S. Bianco, R. Cadeéne, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64270-64277, 2018.

Z.-H. Zhou, “Ensemble methods: foundations and algorithms,” 2012.
N. Garcia and G. Vogiatzis, “Learning non-metric visual similarity for
image retrieval,” Image Vis. Comput., vol. 82, pp. 18-25, 2019.

E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in Similarity-Based Pattern Recognition - Third International Workshop,
SIMBAD, ser. Lecture Notes in Computer Science, vol. 9370, 2015, pp.
84-92.

D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person re-
identification,” in 22nd International Conference on Pattern Recognition,
ICPR, 2014, pp. 34-39.

Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of
Cambridge, 2016.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in ICML, 2017, pp. 1321-1330.

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

NVIDIA AGX Jetson Xavier, https://www.nvidia.com/en-us/
autonomous-machines/embedded- systems/jetson-agx-xavier/,

(Accessed on July 1, 2020).

gRPC, https://grpc.io, (Accessed on June 1, 2020).

J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in [EEE Conference on Computer Vision
and Pattern Recognition, CVPR, 2017, pp. 4724-4733.

K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet?” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional networks,” in
ICCV, 2015, pp. 4489-4497.

Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation
with pseudo-3d residual networks,” in ICCV, 2017, pp. 5534-5542.

0. Kopiiklii, N. Kose, A. Gunduz, and G. Rigoll, “Resource efficient 3d
convolutional neural networks,” in /ICCV Workshops, 2019, pp. 1910-
1919.

C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. R. Dulloor, “Scaling video analytics on constrained edge
nodes,” in SysML, 2019.

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2010, pp. 49-62.

15

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in ACM European
Conference on Computer Systems (EuroSys), 2011, pp. 301-314.

T. Y. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in SenSys. ACM, 2015, pp. 155-168.

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA: latency-
aware video analytics on edge computing platform,” in ACM/IEEE
Symposium on Edge Computing (SEC), 2017, pp. 15:1-15:13.

Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-
cloud barrier for real-time advanced vision analytics,” in /1th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud, 2019.

J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the DNN black-box:
Video analytics with dnns across the camera-cloud boundary,” in ACM
Workshop on Hot Topics in Video Analytics and Intelligent Edges
(HotEdgeVideo), 2019, pp. 27-32.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. N. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM,
2017, pp. 615-629.

P. M. Grulich and F. Nawab, “Collaborative edge and cloud neural
networks for real-time video processing,” in VLDB Endowment, 2018.

C. F. Souza Leite and Y. Xiao, “Improving resource efficiency of deep
activity recognition via redundancy reduction,” in ACM International
Workshop on Mobile Computing Systems and Applications (HotMobile),
2020.

