
Better Never Than Late: Timely Edge Video Analytics
Over the Air

Vinod Nigade∗
VU Amsterdam

Ramon Winder∗
VU Amsterdam

Henri Bal
VU Amsterdam

Lin Wang
VU Amsterdam & TU Darmstadt

ABSTRACT
Edge video analytics based on deep learning has become an impor-
tant building block formanymodern intelligent applications such as
mobile augmented reality and autonomous driving. Various mecha-
nisms have been developed to handle dynamic wireless networks,
compute resource availability, and achieve high analytics accuracy
via filtering, DNN compression, pruning, and adaptation. So far, lim-
ited attention has been paid to timeliness—providing strict service-
level objectives (SLO) for edge video analytics pipelines, which is
essential for the usability of user-interactive and mission-critical
intelligent applications. In this paper, we analyze the challenges in
achieving SLO for edge video analytics and present a system design
for timely edge video analytics over the air leveraging a simple yet
effective idea—feedback control. Our preliminary evaluation based
on a system prototype and real-world network traces shows the
potential of our design. We also discuss the limitations, calling for
future work.

CCS CONCEPTS
• Computer systems organization → Real-time system archi-
tecture; • Networks → Application layer protocols; • Human-
centered computing → Ubiquitous and mobile computing.

KEYWORDS
video analytics, edge computing, SLO guarantee
ACM Reference Format:
Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang. 2021. Better Never
Than Late: Timely Edge Video Analytics Over the Air. In The 3rd Interna-
tional Workshop on Challenges in Artificial Intelligence and Machine Learning
for Internet of Things (AIChallengeIoT 21), November 15–17, 2021, Coimbra,
Portugal.ACM, NewYork, NY, USA, 7 pages. https://doi.org/10.1145/3485730.
3493446

1 INTRODUCTION
The rapid development of Internet-of-Things (IoT) has led to the pro-
liferation of modern intelligent applications driven by the recent ad-
vances of artificial intelligence (AI), such as augmented reality (AR),
intelligent personal assistants, and autonomous driving [1, 2, 7, 21].
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9097-2/21/11.
https://doi.org/10.1145/3485730.3493446

A remarkable number of these applications base their functionality
on video analytics—analyzing continuous video streams generated
by mobile and IoT devices to understand the environment [3]. Pow-
ered by advanced deep learning techniques [13, 26], video analytics
typically relies on sophisticated deep neural networks (DNNs) that
demand intensive computation. This poses critical challenges for
the deployment of emerging intelligent applications that are based
on video analytics, considering the generally limited capability of
mobile and IoT devices.

Edge computing is deemed a promising computing paradigm
for video analytics [28]. The main idea of edge computing is to
deploy computing resources at the network edge (e.g., cellular base
stations, wireless access points) to support computation-intensive
intelligent applications. The edge platform helps reduce network
latency and bandwidth consumption in the wide area, which are
critical limitations of cloud computing. Meanwhile, edge computing
provides more computational power for the deployment of intelli-
gent applications with state-of-the-art DNNs, when compared with
on-device computing.

Despite its high promise, edge computing also brings new critical
challenges for video analytics. On the one hand, the edge-based
setup introduces high system dynamics: (1) The video stream has
to be transferred over a highly variable wireless network before
being processed. (2) The edge platform may be shared with other
concurrent processing tasks, which can bring resource contention,
thus resulting in performance uncertainty. On the other hand, a
variety of modern intelligent applications based on video analytics
require timely processing. For example, user-interactive applica-
tions like virtual reality require that the motion-to-photon latency
is bounded by 20ms [6, 21]. Other time-critical applications like au-
tonomous driving also enforce such constraints to ensure safety [1].
Overall, these applications impose strict service-level objectives
(SLO) on the end-to-end latency in order to be usable in production
environments. Unfortunately, the SLO guarantee for edge video
analytics has been overlooked in the literature so far.

In this paper, we make a case for timely edge video analytics, i.e.,
providing strict SLO defined on the end-to-end latency, including
both the network transfer and the DNN inference serving stages,
for edge video analytics pipelines. We identify the challenges in
achieving SLO guarantees in edge video analytics and perform
analysis on how the existing solutions fall short (Section 2). Based
on the analysis, we propose a design based on the idea of feed-
back control, where the system adapts itself towards the goal of
SLO guarantee by exploiting smoothed history information (Sec-
tion 3). We build a system prototype and conduct experiments with
real-world network traces. Our experimental results show that our
design based on feedback control while being simple, is effective

https://doi.org/10.1145/3485730.3493446
https://doi.org/10.1145/3485730.3493446
https://doi.org/10.1145/3485730.3493446

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang

ServerEnd-device

☑

☐

☐

Frame size/rate
adaptation

DNN size
adaptation

Buffer

Wireless connection

Figure 1: A typical edge video analytics pipeline.

in achieving strong SLO guarantees (Section 4). We also discuss
the limitations of our design (Section 5) and present related work
(Section 6), before concluding the paper (Section 7).

2 BACKGROUND AND MOTIVATION
In this section, we first present background information about edge
video analytics. Then, we proceed to identify the challenges in the
SLO guarantee for edge video analytics. Finally, we analyze the
research gap in the literature and motivate our work.

2.1 Edge Video Analytics
The widespread adoption of high-resolution cameras and the rapid
advancements of deep learning techniques have rendered deep
learning based video analytics a key component in a variety of
modern intelligent applications such as AR and autonomous driv-
ing [1, 21]. On the one hand, these deep learning techniques involve
sophisticated DNNs to achieve high analytics accuracy, which typ-
ically requires intensive computation. On the other hand, the us-
ability of these applications is subject to the service-level objective
(SLO) on the latency [12, 17]. However, end-devices are typically
equipped with limited computing resources due to portability and
battery limitations. Thus, achieving high usability without dramat-
ically sacrificing analytics accuracy for real-time video analytics is
unlikely with on-device computing.

Edge video analytics leverages computing resources deployed
at the network edge, e.g., at the cellular base stations and wireless
access points, to perform video data processing. The end-device is
connected to the edge platform with a one-hop wireless connection.
An overview of a typical edge-based video stream analytics system
is depicted in Figure 1. Due to the variability of the wireless network
performance, achieving the highest analytics accuracy constantly in
edge video analytics is hardly possible. To handle system dynamics
and optimize analytics accuracy, adaptive approaches allows the
system to adapt its video frame size/rate together with the employed
DNN (e.g., from a pool of DNNs optimized at different levels with
techniques including pruning and quantization), which conducts
a tradeoff between the resource consumption and the analytics
accuracy at runtime.

2.2 Being on Time Is Hard
Providing strict SLO on the end-to-end latency in edge video ana-
lytics is hard, and we identify the following challenges:
C1 Network variability of the wireless connection. The condi-

tion of the network connection (e.g., bandwidth and round-trip
time, RTT) between the end-device and the edge platform suf-
fers high variability due to the nature of the wireless connection

which is susceptible to end-device mobility and environmental
interference [14, 31]. This is confirmed by our collected WiFi
traces (see Figure 5(top)) measured with a smartphone while
moving around. The peak-to-valley bandwidth ratio can be as
large as 5×. As a result, the time for sending a video frame over
the network is also highly variable and hard to predict.

C2 Performance volatility of the edge platform. The edge
platform consists of powerful but still limited computing re-
sources which are likely to be shared amongmultiple processing
tasks from different users/applications due to proximity con-
siderations, i.e., users receive edge resources from the location
closest to the end-device. Without sophisticated performance
isolation mechanisms which are unlikely to be implemented
at the resource-constrained edge, co-located processing tasks
can incur significant performance interference with each other.
This problem has been highlighted in Figure 5 in [30] where
resource contention turns out to be a major source of system
performance volatility. Thus, the time it takes to process an
inference request (e.g., a video frame or a window of frames)
can show a high level of uncertainty.

C3 Cascading effect of system adaptation decisions. The edge
video analytics pipeline consists of twomajor steps, namely data
transfer and DNN inference, with buffers holding pending infer-
ence requests before each of these steps, as shown in Figure 1.
Consequently, the adaptation decision made for the current
video frame may negatively affect those for future video frames
in a complex manner due to the well-known “bufferbloat” issue.
Such a cascading effect imposes extremely high complexity in
system adaptation decision-making for SLO guarantee.

C4 DAG-based DNN inference serving.As discussed, edge video
analytics involves both the data transfer and the DNN inference
steps. For the DNN inference step, many existing works assume
that only one DNN is involved in the analytics. Alternatively,
the application can involve a more complex inference serving
logic where multiple DNNs are orchestrated into a directed
acyclic graph (DAG) for serving inference requests. Achieving
strict SLO thus requires appropriate coordination among all the
DNNs involved in the analytics pipeline, which further adds
complexity to system adaptation.

2.3 Where Are We Standing?
Existing solutions to video analytics can be generally categorized
into two directions: adaptive video analytics and DNN inference
serving. The former concerns system adaptation to conduct trade-
offs between analytics accuracy and resource consumption to han-
dle system dynamics. The latter mainly focuses on resource manage-
ment on server clusters to achieve resource efficiency while meeting
performance goals. A summary of the representative works in both
research directions is shown in Table 1. Through this comparison,
we make the following observations: (1) While some work (e.g.,
JetStream and AWStream) has considered latency in their system
design, achieving strict SLOs for edge (or wide-area) video analytics
has been rarely explored. (2) Very little attention has been paid on
jointly considering the variability of both the network and compute
steps in the design of adaptive edge video analytics pipelines. (3)
DAG-based DNN inference has hardly been considered in adaptive

Better Never Than Late: Timely Edge Video Analytics Over the Air AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

Solution Network Compute DAG SLO

Adaptive (wide-area or edge) video analytics
JetStream [25] ✓ ✗ ✗ -
LAVEA [32] ✓ ✓ ✓ -
VideoStorm [35] ✗ ✓ ✓ -
AWStream [34] ✓ ✗ ✗ -
Chameleon [16] ✗ ✓ ✗ ✗

VideoEdge [15] ✓ ✓ ✓ ✗

Clownfish [24] ✓ ✗ ✗ ✓

DDS [10] ✓ ✗ ✗ -
SPINN [19] ✓ ✗ ✗ ✓

DNN inference serving
Clipper [9] ✗ ✓ ✗ ✓

DeepQuery [11] ✗ ✓ ✓ -
Nexus [29] ✗ ✓ ✗ ✓

GrandSLAm [17] ✗ ✓ ✓ ✓

InferLine [8] ✗ ✓ ✓ ✓

ALERT [30] ✗ ✓ ✗ ✓

Clockwork [12] ✗ ✓ ✗ ✓

Llama [27] ✗ ✓ ✓ ✓

Table 1: Summary of existing video analytics systems (✓:
full support, -: partial support (latency considered but not
guaranteed), ✗: no support).

edge video analytics systems. Overall, we see a clear gap between
the state-of-the-art and our goal of providing strict SLOs for the
end-to-end edge video analytics pipeline.

3 TIMELY EDGE VIDEO ANALYTICS VIA
FEEDBACK CONTROL

In this section, we show how we can achieve timely video analytics
over the air by leveraging a simple idea called feedback control.
We first explain why feedback control is a suitable choice and then
present our system design.

3.1 Why Use Feedback Control?
Generally speaking, achieving strict SLOs in edge video analytics
can be done with two lines of approaches: proactive and reactive.
Proactive approaches make system adaptation decisions based on
real-time system status. Hence, they require precise information
about the network status (typically done with bandwidth prob-
ing [34]), the availability of the compute resources, and the expected
performance interference (e.g., based on a complex performance
model [30]), all in real-time. However, the edge environment is
highly dynamic, and obtaining such information precisely on time
is not always realistic. On the contrary, reactive approaches rely
on the history information based on the outcome of past system
status and adaptation decisions. Overall, the benefits of reactive
approaches include:
• No need for bandwidth probing and thus incurring no network
overhead,

• No need for building explicit performance (interference) models
for DNNs on the edge, and

• High scalability since the adaptation logic is relatively simple
and can be placed on every end-device.

Frame Manager

Controller

Analytics
results

Video
frames Adapted video

frames

State Manager

Edge

Inference
Manager

DNN Pool

End-device

Feedback

Figure 2: An overview of the system architecture and the
main workflow.

Considering these benefits, we adopt a reactive approach for the
SLO guarantee in edge video analytics. More specifically, we employ
the feedback control technique, where we tune the system towards
our goal based on the observed system outcome in the history.
Our design is a proof-of-concept for reactive approaches. More
sophisticated mechanisms such as PID control, model predictive
control (MPC), and deep reinforcement learning (DRL) can also be
explored later as they have shown big successes in other networked
systems [22, 23, 33].

3.2 System Design
We now present our system design—timely edge-based video an-
alytics over the air based on feedback control. Figure 2 depicts
an overview of the system architecture and the general workflow.
Overall, the system contains several modules that span across the
end-device and the edge. The end-device represents a less power-
ful user device (e.g., a smartphone or an AR device), which uses a
camera to capture the environment and generates the video stream
for analytics, while the edge represents a relatively more power-
ful server equipped with high-end accelerators like GPUs at the
network access point which the end-device is connected to via a
wireless connection (e.g., WiFi, LTE, or 5G).

3.2.1 System workflow. The system works as follows: On the end-
device, the Frame Manager module receives video frames at a fixed
frame rate (e.g., 30 frames per second). The Frame Manager then
resizes the video frames based on the control decision produced by
the Controller module, encodes them, and sends them to the send-
ing queue. The frames will be sent out to the edge over the wireless
network. Upon receiving a frame from the end-device, the Inference
Manager module on the edge picks a DNN with size matching the
frame size from the pool of DNNs and uses the selected DNN to
perform inference on the frame. Here, we choose an inference task
involving only one DNN for simplicity, but our system supports
DAG-based DNN inference tasks. When the inference is complete,
the Inference Manager sends the inference result (typically contain-
ing text labels and bounding box coordinates which are small in
size) to the end-device. On the end-device, a module called State
Manager collects system state information, including the time it
takes for every frame to be sent and processed by the edge. The
Controller then relies on the information provided by the State
Manager module and employs a control algorithm (detailed later)
to make system adaptation decisions, i.e., deciding the frame size
for the upcoming frames.

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang

Video Analytics
System

State
Manager Controller

Analytics
results

Smoothing
Filter

Treal(t − 1)

Ttarget δ(t) s(t)

Figure 3: Feedback control internals.

3.2.2 State manager. This module manages the system state. As-
sume the SLO is given by 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 , which is the target per-frame
end-to-end latency that the system aims to achieve. Specifically, the
State Manager maintains the measured end-to-end latency of past
frames and removes noise from the measurement results using a
smoothing filter. Particularly, we employ an error-based adaptive
filter [18], which has a good balance between sensitivity to large
changes and stability to small fluctuations. Assume time is split
into slots (e.g., one second). We denote the smoothed latency at
time slot 𝑡 by 𝑇𝑟𝑒𝑎𝑙 (𝑡). We then compute the term deviation 𝜎𝑡 as
an absolute difference between the target latency and the smoothed
latency, i.e., 𝜎 (𝑡) = |𝑇𝑟𝑒𝑎𝑙 (𝑡) −𝑇𝑡𝑎𝑟𝑔𝑒𝑡 |. The error 𝑒 (𝑡) is calculated
by scaling the deviation 𝜎 (𝑡) where we use the power function as
the scaling method:

𝑒 (𝑡) =
{
− (𝜎 (𝑡))𝑎, if 𝑇𝑟𝑒𝑎𝑙 (𝑡) ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 ,

+ (𝜎 (𝑡))𝑏 , otherwise
(1)

Here, 𝑎 and 𝑏 are parameters and we set 𝑏 > 𝑎 to assign a higher
penalty to SLO misses.

The State Manager also maintains an observation window of
up to 𝑊 past time slots where the average of the errors in the
observation window is used as an output of the State Manager,
i.e., 𝛿 (𝑡) = ∑𝑡−1

𝑖=𝑡−𝑊 𝑒 (𝑖)/𝑊 . We reset the window on every control
decision (i.e., on frame size adaptation). Therefore, the past𝑊 error
values accumulated in the window always represent errors under
the same frame size.

3.2.3 Controller. We employ a threshold-based approach to make
the adaptation decision, denoted by 𝑠 (𝑡), as shown in the following
equation:

𝑠 (𝑡) =

𝑠 (𝑡 − 1) + 1, if 𝛿 (𝑡) ≤ \𝑙𝑜𝑤 ,

⌊𝑠 (𝑡 − 1)/2⌋, if 𝛿 (𝑡) ≥ \ℎ𝑖𝑔ℎ,

𝑠 (𝑡 − 1), otherwise.

(2)

Intuitively, we gradually increment the (enumerated) frame size to
the next level when the state output 𝛿 (𝑡), i.e., the average error in
the observation window, is lower than some threshold. Inspired by
existing congestion control algorithms used for network transport,
we decrease the enumerated frame size multiplicatively to respond
fast to dramatic network bandwidth changes. The behavior of the
adaptation can be further fine-tuned so that the change in the frame
size matches the state output 𝛿 (𝑡).

In this preliminary work, we chose values for the thresholds and
other control parameters empirically. However, choosing threshold
values adaptively based on the variance in the measurements and
the amount of increase in the latency values for different frame
sizes can be used to further improve the performance.

3.2.4 Incorporating Analytics Accuracy. Typically, the accuracy of
DNNs increases with the increase in the input (frame) size, but
not always. One option is to let the Controller return the largest
frame size that can satisfy the SLO, but this may not provide the
best analytics accuracy. Therefore, we choose to select the frame
size that provides the highest accuracy among all feasible frame
sizes—the frame sizes that are smaller or equal to the one returned
by the Controller. Estimating a function that maps the frame size
to the analytics accuracy during runtime is a challenging and open
problem due to well-known issues such as video context drifts [4].
We leave it for future exploration.

4 PRELIMINARY EVALUATION
In this section, we introduce the experimental setup and discuss
the evaluation results in detail.

4.1 Experimental Setup
4.1.1 System setup. We built a system prototype with an NVIDIA
Jetson Xavier board as the mobile end-device and a server equipped
with an Intel Xeon E5-2630 CPU, 64GB DRAM, and an NVIDIA RTX
2080 Ti GPU as the edge server. The two devices are connected via
a 1Gbps Ethernet network, on which we use the Linux tc utility to
replay wireless network traces (under mobility) for experiments.
The system software is implemented in C++, where we use OpenCV
for frame-based operations and Darknet for DNN inference on
GPUs [5]. We evaluated our system on the object detection task
performed by YOLOv4 DNNs. Our DNN pool consists of 19 YOLOv4
DNNs [5] with input sizes ranging from 64 × 64 to 640 × 640 with
a step size of 32. We load as many DNNs to the GPU memory as
possible and use the least recently used (LRU) policy to evict loaded
DNNs to make room for new DNNs. For the experiments, we use
videos from the PKU-MMD dataset [20], which contain multiple
objects including persons, desks, and chairs. We set the SLO as
33ms, the minimal latency for achieving 30 FPS with a single GPU,
which is also a much tighter number compared with what is used
in other systems where the SLO is set to hundreds of milliseconds
or even seconds [12, 17].

We implemented the client and server as a single process, multi-
threaded module. The client module has three main threads for
reading (or capturing) frames, sending frames, and receiving object
detection results. The reading thread calls the controller in the
same thread context and then preprocesses (resize plus encode)
the frame according to the frame size returned by the controller.
Upon receiving detection results, the receiving thread makes a
call to the controller to handle feedbacks. Like the client module,
the server module also has the receiving and sending threads and
their associated queues. The server runs a main serving thread
that calls the Darknet API (detect) to execute the desired DNN
model from the model pool in the same thread context and uses
a separate loading thread for provisioning a desired but passive
model on the GPU. Note that one can use more advanced model
serving frameworks like Clipper, INFaaS, or Clockwork as a server
module, as long as the frameworks do not introduce highly variable
delay such as waiting time or overhead in model switching (or
scheduling).

Better Never Than Late: Timely Edge Video Analytics Over the Air AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

4.1.2 Parameter values. We empirically choose the history window
𝑊 size to be 20, i.e., observing the last 20 frames as feedback. The
controller at time 𝑡 does not wait for the direct previous frame
feedback (i.e., a frame sent at (𝑡 − 1)) as it introduces a delay that
may create a cascading effect in case of short glitches in the system.
Therefore, we make decisions on stale feedbacks but with a limit
on the staleness (e.g., no more than one second elapsed or at least
the feedback for (𝑡 − 30)th frame must be available) under the
assumption that the system’s state remains relatively stable for a
short period of time. We choose the value of threshold \𝑙𝑜𝑤 as a
negative value of the product (𝑊 · 7.5) and \ℎ𝑖𝑔ℎ as zero. Here,
the multiplier 7.5ms roughly represents the increase in end-to-end
latency plus the variance if the model size increases by one.

4.1.3 Evaluation metric. We use end-to-end (E2E) latency as a mea-
sure of timeliness, and it includes the processing (resizing plus
encoding) time on the client, network transmission time to send
frames and receive results, processing time (decode and maybe
resize) on the server, queuing delay and the DNN inference time.

4.1.4 Controller overhead. One of the main goals in our controller
design is to be scalable and lightweight in terms of compute, mem-
ory, and network usage. The control algorithm for every decision-
making requires only a few simple arithmetic and logical operations
that should be extremely fast on many end-devices. In terms of
memory, the controller has to store only an array of past errors
in the control window of length𝑊 and requires no extra network
usage, as we do not have to monitor (or profile) network bandwidth
actively.

4.2 Results
We perform experiments on our testbed with both synthetic band-
width shaping values similar to those used in [34], and real-world
WiFi network traces collected by ourselves when walking with a
mobile device connected to a WiFi access point.

Figure 4 shows the results with the synthetic bandwidth shap-
ing values. Here, we assume the end-device sends 30 frames per
second to the edge server for analytics. We periodically choose
the bandwidth limit values from the ordered list {25, 7.5, 5} Mbps
and each value for 20 seconds. The top plot shows the network
bandwidth variation over time. The middle plot shows the selected
model compared with the desired model (the optimal one if the
current network bandwidth condition is known beforehand). In our
setup, the models that are neighbors in size of the currently active
model are often pre-loaded according to the LRU model caching
and replacement policy with enough GPU capacity. As a result, the
model switching is almost always done instantaneously. The bot-
tom plot depicts the measured end-to-end latency of every frame,
where we can see that the SLO violation rate is as low as 1.03%
despite the extremely tight SLO.

Figure 5 shows the results with real-world WiFi network trace
collected by ourselves. Here, the network bandwidth varies at the
granularity of seconds. As we can see, the variability is significant,
confirming the need for system adaptivity for the SLO guarantee.
Even under the highly variable network conditions, our proposed
method meets the SLO for 98.3% of all the frames, confirming the

0 1000 2000 3000 4000 5000
0

10

20

30

Ba
nd

w
id

th
 (M

bp
s)

0 1000 2000 3000 4000 5000
0

5

10

15

M
od

el
 In

de
x Target Model

Used Model

0 1000 2000 3000 4000 5000
Frames

0

20

40

E2
E

La
te

nc
y

(m
s)

SLO

Figure 4: SLO guarantee performance under a synthetic net-
work bandwidth trace.

effectiveness of our proposed reactive approach for the SLO guar-
antee.

Although we use the additive increase multiplicative decrease
adaptation strategy, it can be seen from the figures (especially Fig-
ure 4) that our control algorithm quickly ramps up the DNN model
as soon as the bandwidth improves significantly. This is because the
end-to-end latency would be much lower than the target SLO, lead-
ing to the high error values defined in Equation 1. This ultimately
leads to the selection of DNN models with larger sizes to quickly
lower the gap between the target SLO and the measured per-frame
end-to-end latency. The DNN model size is decreased dramatically
when there is a significant drop in bandwidth, preventing violations
due to slow reactions from the algorithm.

Figure 6 depicts the CDF of the end-to-end latency under both the
synthetic and real-world network bandwidth traces. We can clearly
observe that most of the frames (e.g., 99% with the synthetic trace
and 98.3% with the real-world trace) are completed within the SLO.
Note that, in both cases, the median latency of the frames finished
before the deadline is around 27.53ms and 28.87ms, respectively,
indicating that our method is not very conservative and does not
significantly waste the latency budget to meet the SLO.

5 DISCUSSION
In this section, we discuss some of the limitations of our proposed
approach and envision future work.

5.1 Responsiveness
While achieving promising results, we also notice some inevitable
limitations in terms of responsiveness: (1) Feedback control, in its
nature, is a reactive approach where the adaptation is done based
on a smoothed history and is not sensitive to rapid changes in
network bandwidth. (2) In our adaptation logic, we always choose

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang

0 1000 2000 3000 4000 5000
0

50

100

Ba
nd

w
id

th
 (M

bp
s)

0 1000 2000 3000 4000 5000
0

5

10

15

M
od

el
 In

de
x

Target Model
Used Model

0 1000 2000 3000 4000 5000
Frames

0

20

40

E2
E

La
te

nc
y

(m
s)

SLO

Figure 5: SLO guarantee performance under a real-world
WiFi bandwidth trace.

5 15 30 45 60
E2E Latency (ms)

0.25

0.50

0.75

1.00

C
D

F

SL
O

0.99

Synthetic Trace

5 15 30 45 60
E2E Latency (ms)

0.25

0.50

0.75

1.00

SL
O

0.983

Real-world Trace

Figure 6: CDF of end-to-end latency under different band-
width conditions.

a neighboring model to switch to, disallowing jumping decisions.
While this helps with the model caching since future adaptation
decisions are among the neighbors of the current DNN model, it
also brings a delay in reacting to bandwidth changes. On the other
hand, if we employ an adaptation algorithm that can freely change
the DNN model size, i.e., more responsive to network bandwidth
changes, we need to find a solution for model caching since loading
a DNN to the GPU memory takes a few seconds. We will explore
such algorithms in future work.

5.2 Model Selection and Batching
In this work, we assume the batch size during DNN inference to
be one, which is suboptimal when (1) clients have higher latency
SLOs, (2) many concurrent clients need to be served. Typically,
DNN models offer higher throughput at large batch sizes but at the
expense of higher inference latency. For clients with larger SLO
(i.e., with a higher latency budget on the server), we can select
larger models to satisfy the desired throughput (and accuracy as a
consequence) by choosing larger batch sizes optimally. However,

estimating the latency budget and determining the DNN model size
together with the inference batch size in real-time under dynamic
network conditions is non-trivial.

Furthermore, choosing models and batch sizes is complicated in
the case of multiple clients issuing concurrent inference requests to
the edge. In such a scenario, executing inferences at batch size one
may lead to underutilization of the edge server and thus sub-optimal
performance. The latest cloud inference serving systems promise to
meet the latency SLOs but only on the server side and fail to consider
the end-to-end latency which includes also the dynamic network
part. As future work, we aim to design and implement a modern
DNN serving system that can jointly consider the client’s network
dynamics and requirements (e.g., throughput), DNN management,
and scheduling on the edge server with limited resources.

6 RELATEDWORK
With the goal of achieving high analytics accuracy, adaptive edge
video analytics systems such as AWStream [34] and Chameleon [16]
conduct dynamic tradeoffs between resource consumption and accu-
racy via adapting system configurations, including frame size/rate
and DNN model.

However, very few of these systems target the goal of achieving
strict SLO guarantee. SLO guarantee for video analytics has been
studied in the literature, but the focus is mainly on DNN infer-
ence serving on the server so far. Existing systems like Clipper [9],
Nexus [29], and Clockwork [12] target efficient video analytics with
strict SLO guarantees through informed resource management and
request scheduling in server clusters. There are also systems such
as GrandSLAm [17], InferLine [8], and Llama [27] that consider
SLO guarantee in complex video analytics graphs on servers.

None of these works include the data transfer over the wireless
network, which plays a critical role in edge video analytics pipelines.
Unlike all these works, we propose to meet SLOs on the per-frame
end-to-end latency for edge video analytics over the air.

7 CONCLUSIONS
In this paper, we made a case for timely video analytics at the edge
by enforcing strict SLOs. We identified the challenges in achieving
strict SLO guarantee on edge video analytics pipelines and analyzed
the gap in the existing systems. We also proposed an adaptation
mechanism based on feedback control which canmake system adap-
tation decisions towards the specified SLO for edge video analytics.
Preliminary results based on a prototype implementation showed
that the proposed mechanism is promising, but imposes several
limitations. In our future work, we will study more sophisticated
adaptation mechanisms.

ACKNOWLEDGMENTS
This work is part of the Efficient Deep Learning (EDL) programme
(grant number P16-25), financed by the Dutch Research Council
(NWO). Lin Wang was partially supported by the German Research
Foundation (DFG) Collaborative Research Center 1053–MAKI.

REFERENCES
[1] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.

CarMap: Fast 3D Feature Map Updates for Automobiles. In USENIX NSDI. 1063–
1081.

Better Never Than Late: Timely Edge Video Analytics Over the Air AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

[2] Ali J. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:
edge-assisted visual simultaneous localization and mapping. In ACM MobiSys.
325–337.

[3] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-Time Video
Analytics: The Killer App for Edge Computing. Computer 50, 10 (2017), 58–67.

[4] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Niko-
laos Karianakis, Yuanchao Shu, Kevin Hsieh, Victor Bahl, and Ion Stoica. 2020.
Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers.
CoRR abs/2012.10557 (2020). arXiv:2012.10557 https://arxiv.org/abs/2012.10557

[5] Alexey Bochkovskiy, Chien-YaoWang, and Hong-YuanMark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. CoRR abs/2004.10934 (2020).
arXiv:2004.10934 https://arxiv.org/abs/2004.10934

[6] Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immersive Virtual
Reality on Mobile Devices via Rendering Memoization. In ACMMobiSys. 291–304.
https://doi.org/10.1145/2906388.2906418

[7] Michael Braun, Anja Mainz, Ronee Chadowitz, Bastian Pfleging, and Florian
Alt. 2019. At Your Service: Designing Voice Assistant Personalities to Improve
Automotive User Interfaces. In ACM CHI. 40.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph
Gonzalez, and Alexey Tumanov. 2020. InferLine: Latency-Aware Provisioning
and Scaling for Prediction Serving Pipelines. In ACM SoCC. 477–491. https:
//doi.org/10.1145/3419111.3421285

[9] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In USENIX NSDI. 613–627.

[10] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. 2020. Server-Driven Video Streaming for
Deep Learning Inference. In ACM SIGCOMM. 557–570. https://doi.org/10.1145/
3387514.3405887

[11] Zhou Fang, Dezhi Hong, and Rajesh K. Gupta. 2019. Serving deep neural networks
at the cloud edge for vision applications on mobile platforms. In ACM MMSys.
ACM, 36–47. https://doi.org/10.1145/3304109.3306221

[12] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In USENIX OSDI. 443–462.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE CVPR. IEEE Computer Society, 770–778.

[14] Junxian Huang, Feng Qian, Alexandre Gerber, Zhuoqing Morley Mao, Subhabrata
Sen, and Oliver Spatscheck. 2012. A close examination of performance and power
characteristics of 4G LTE networks. In ACM MobiSys. 225–238.

[15] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodík, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018. VideoEdge: Processing
Camera Streams using Hierarchical Clusters. In IEEE/ACM SEC. 115–131.

[16] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha Sen, and
Ion Stoica. 2018. Chameleon: scalable adaptation of video analytics. In ACM
SIGCOMM. 253–266.

[17] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn,
Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing SLAs for Jobs in
Microservices Execution Frameworks. In ACM EuroSys. 1–16. https://doi.org/10.
1145/3302424.3303958

[18] Minkyong Kim and Brian D. Noble. 2001. Mobile network estimation. In ACM
MOBICOM. 298–309. https://doi.org/10.1145/381677.381705

[19] Stefanos Laskaridis, Stylianos I. Venieris, Mário Almeida, Ilias Leontiadis, and
Nicholas D. Lane. 2020. SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In ACM MobiCom. 37:1–37:15. https://doi.org/
10.1145/3372224.3419194

[20] Chunhui Liu, Yueyu Hu, Yanghao Li, Sijie Song, and Jiaying Liu. 2017. PKU-MMD:
A Large Scale Benchmark for Skeleton-Based Human Action Understanding. In
ACM VSCC, Xiaobai Liu, Yadong Mu, Yu-Gang Jiang, and Jiebo Luo (Eds.). ACM,
1–8. https://doi.org/10.1145/3132734.3132739

[21] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time
Object Detection for Mobile Augmented Reality. In ACM MobiCom. 25:1–25:16.

[22] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In ACM SIGCOMM. ACM, 197–210. https:
//doi.org/10.1145/3098822.3098843

[23] Konstantin Miller, Dilip Bethanabhotla, Giuseppe Caire, and Adam Wolisz. 2015.
A Control-Theoretic Approach to Adaptive Video Streaming in Dense Wireless
Networks. IEEE Trans. Multim. 17, 8 (2015), 1309–1322. https://doi.org/10.1109/
TMM.2015.2441002

[24] Vinod Nigade, Lin Wang, and Henri E. Bal. 2020. Clownfish: Edge and Cloud
Symbiosis for Video Stream Analytics. In IEEE/ACM SEC. IEEE, 55–69. https:
//doi.org/10.1109/SEC50012.2020.00012

[25] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, andMichael J. Freedman.
2014. Aggregation and Degradation in JetStream: Streaming Analytics in the
Wide Area. In USENIX NSDI. 275–288.

[26] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv (2018).

[27] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video
Analytics Pipelines. arXiv (2021). arXiv:2102.01887

[28] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. Computer
50, 1 (2017), 30–39.

[29] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU cluster
engine for accelerating DNN-based video analysis. In ACM SOSP. 322–337.

[30] Chengcheng Wan, Muhammad Husni Santriaji, Eri Rogers, Henry Hoffmann,
Michael Maire, and Shan Lu. 2020. ALERT: Accurate Learning for Energy and
Timeliness. In USENIX ATC. 353–369.

[31] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding Operational 5G: A
First Measurement Study on Its Coverage, Performance and Energy Consumption.
In ACM SIGCOMM. 479–494.

[32] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun
Li. 2017. LAVEA: latency-aware video analytics on edge computing platform. In
ACM/IEEE SEC. 15:1–15:13.

[33] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In ACM
SIGCOMM. 325–338. https://doi.org/10.1145/2785956.2787486

[34] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A. Lee.
2018. AWStream: adaptive wide-area streaming analytics. In ACM SIGCOMM.
236–252.

[35] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In USENIX NSDI. 377–392.

https://arxiv.org/abs/2012.10557
https://arxiv.org/abs/2012.10557
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3387514.3405887
https://doi.org/10.1145/3387514.3405887
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1145/381677.381705
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3132734.3132739
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1109/TMM.2015.2441002
https://doi.org/10.1109/TMM.2015.2441002
https://doi.org/10.1109/SEC50012.2020.00012
https://doi.org/10.1109/SEC50012.2020.00012
https://arxiv.org/abs/2102.01887
https://doi.org/10.1145/2785956.2787486

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Edge Video Analytics
	2.2 Being on Time Is Hard
	2.3 Where Are We Standing?

	3 Timely Edge Video Analytics via Feedback Control
	3.1 Why Use Feedback Control?
	3.2 System Design

	4 Preliminary Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	5.1 Responsiveness
	5.2 Model Selection and Batching

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

