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Abstract
Many private and public organizations deploy large num-
bers of cameras, which are used in application services for
public safety, healthcare, and traffic control. Recent advances
in deep learning have demonstrated remarkable accuracy
on computer analytics tasks that are fundamental for these
applications, such as object detection and action recogni-
tion. While deep learning opens the door for the automation
of camera-based applications, deploying pipelines for live
video analytics is still a complicated process that requires
domain expertise in the fields of machine learning, com-
puter vision, computer systems, and networks. The problem
is further amplified when multiple pipelines need to be de-
ployed on the same infrastructure to meet different users’
diverse and yet dynamic needs. In this paper, we present a
live-video-analytics-as-a-service vision, aiming to remove
the complexity barrier and achieve flexibility, agility, and
efficiency for applications based on live video analytics. We
motivate our vision by identifying its requirements and the
shortcomings of existing approaches. Based on our analysis,
we present our envisioned system design and discuss the
challenges that need to be addressed to make it a reality.

CCS Concepts: •Computer systems organization→ Em-
bedded and cyber-physical systems; • Information sys-
tems→ Data management systems.
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1 Introduction
Today, public places like airports, traffic intersections or tun-
nels, and nursing homes deploy a large number of cameras to
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Figure 1. A live video analytics system at an airport serving
multiple departments (i.e., users) with diverse needs.

support services such as security and safety, crowd and traf-
fic control, and patient monitoring [18, 38, 39]. Traditionally,
these cameras are static and the videos collected by them are
streamed to big monitors in a security office and watched
manually by humans to detect anomalies or recorded for
offline investigation. The recent advances in deep learning
(DL) have brought new hope to this tedious, cumbersome
practice, where deep neural networks (DNNs) have shown
numerous successful examples of outperforming humans
on analytics tasks, including object recognition, tracking,
and action recognition [5, 13, 31]. Complex video analyt-
ics tasks can be automatically accomplished by composing
multiple DNNs together in a video processing pipeline that
takes live videos streamed from cameras as input [6, 22, 29].
The pipeline is then provisioned either on an edge [2] or
cloud [28] platform or on a hybrid one spanning both the
edge and cloud [26] to meet real-time performance.

However, the real-world adoption of DL-based live video
analytics systems still faces many challenges [35]. One recent
challenge is the provisioning of data and user privacy [4].
Another crucial challenge is the complexity in deploying and
managing such systems [16, 30, 34]. Given a video analyt-
ics task, provisioning an efficient video processing pipeline
requires extensive knowledge in multiple domains, includ-
ing machine learning, computer vision, computer systems,
and networks. Further, real-world scenarios often involve
multiple video streams from a set of cameras and a diverse
group of non-expert users with different needs, as depicted
in Fig. 1.
Despite the rich literature on video analytics, most exist-

ing DL-based video analytics systems fall into the “piece-
meal” category, lacking an holistic, end-to-end mindset in
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their designs. Following the traditional store-and-analyze
approach, systems like Blazeit [20] and Miris [3] focus on
optimizing the performance of DL-based analytics tasks on
static (data-at-rest) video databases, without support for live
video streams. There exist also a considerable number of
live video analytics systems that are tailored for a particular
analytics task or scenario [17, 24, 26, 37]. These “domain-
specific” solutions are hard to generalize and thus cannot
accommodate the diverse and dynamic needs of different
users. A few recent approaches aim at providing a more uni-
fied and versatile environment for live video analytics [34],
but still lack support for several critical requirements (see
requirement identification in §2 and gap analysis in §3).

In this paper, we present our vision for live video analytics,
advocating for a concept known as live-video-analytics-as-
a-service [1, 28] targeting the device-edge-cloud computing
continuum. The goal of our vision is to remove the complex-
ity barrier for the adoption of video analytics in real-world
scenarios and to bring more flexibility, agility, and efficiency
to the space. Ideally, a live video analytics system should be
able to perform diverse, dynamic video analytics tasks across
a large number of cameras in real-time, meeting the needs of
different non-expert users in a unified manner while preserv-
ing privacy. Our envisioned system addresses this challenge
by featuring the following design proposal:

• A declarative interface that allows users to describe
their analytics tasks with customized camera scope
and lifetime as well as requirements for latency and
accuracy, requiring no domain expertise,

• An adaptive analytics engine that can automatically
compose video analytics pipelines to serve user-specified
analytics tasks, with privacy constraints enforced, and
adapt these pipelines dynamically according to the
changing computational environment and content in
the video streams,

• An efficient runtime system that optimizes the pro-
visioning of the video analytics pipelines across the
device-edge-cloud computing continuum to achieve
real-time analytics performance with high resource
efficiency.

In the following, we first provide a thorough analysis for
identifying the requirements of an ideal live-video-analytics-
as-a-service system (§2). Then, we discuss in detail how
existing approaches fall short in meeting these requirements
(§3). Finally, we sketch the design of our envisioned system,
highlighting the challenges in the design and pointing out
future directions to explore (§4).

2 Identifying the Requirements
In this section, we dissect an ideal live video analytics system
(as depicted in Fig. 1) and identify the requirements that
need to be fulfilled by such a system towards achieving our
vision of live-video-analytics-as-a-service. We will follow the

general workflow of such a system guided by the following
questions: (a) How do users interact with the system? (b)
How to synthesize video analytics pipelines? (c) How to
deploy and execute these pipelines?

2.1 User Interaction
The live video analytics system needs to serve various non-
expert users who submit analytics tasks to one or more cam-
eras and persist in the system for a customized time period.
User interaction should meet the following requirements.
Intent-oriented interface. Users are unlikely to be ex-

perts on video analytics. Hence, it is critically important that
users can describe their analytics tasks with a simple, high-
level, intent-oriented interface. We advocate for a declarative
interface that allows the users to focus on what they need
(“find the busiest store”), instead of how it should be done.
Despite its simplicity, the interface needs to be expressive
enough to cover a wide variety of use cases.

Cross-camera exploration. Many real-world live video
analytics use cases involve a large set of interconnected cam-
eras. To support these use cases, the interface should provide
syntax that allows describing cross-camera analytics tasks.
This is essential for tracking-based tasks where the tracked
objects may move across cameras. The interface should also
support customizing the scope of a cross-camera analytics
task, e.g., specifying the location or subset of cameras to
consider.

Temporality. Depending on the user’s needs, a task may
need to be performed just once, for a specific period of time,
or indefinitely. Taking the scenario of Fig. 1 as an example,
the security department may submit an analytics task “find
abandoned luggage” to run indefinitely, while the traffic
department may require the task “find the busiest square” to
run only during rush hours. The interface should provide
syntax to support such temporality requirements. Tasks may
also have an event matching windows where the analysis is
continuously made over fixed intervals of a video stream [33].
Note that windowing is independent of task lifetime.

2.2 Video Analytics Pipeline Synthesis
Since the users will only declare their task goals, the live an-
alytics system must automatically synthesize video analytics
pipelines that consist of DL models. The synthesis procedure
needs to take into account the following aspects.

Cross-task sharing. Often, video analytics pipelines may
share DL models between user tasks. This becomes possible
when tasks want to apply the same DL model to the same
input, which frequently occurs for models that “pre-process”
the video streams early on in the pipelines. The pipeline
synthesis procedure should eliminate these redundancies
during deployment as much as possible by constructing joint
pipelines for multiple tasks to improve resource efficiency.

Content-awareness. The synthesized pipeline for a task
should also adapt based on the content of the video streams.



Live Video Analytics as a Service EuroMLSys’22, April 5–8, 2022, RENNES, France

The motivation for content adaptation is twofold. First, DL
models tend to show varying accuracy for different video
contents (e.g., due to changing numbers of objects or lighting
conditions) and, thus, the pipeline should select the most
accurate model among the functionally-equivalent ones with
respect to the current condition. Second, the set of cameras
that contribute to a task may change over time (e.g., for the
analytics task of “tracking a unique object”, other camera
feeds can be ignored once the object has been detected in
a specific camera). Being adaptive to these dynamic factors
can improve the overall efficiency of the system.

PTZ support.Modern cameras increasingly support “pan-
tilt-zoom” (PTZ) features that allow them to change their
field and angle of view when instructed. However, current
systems require humans to send these instructions manually
or execute a preset of instructions in a timely manner [23].
We argue the need for a “human-out-of-the-loop” design,
where the system can take advantage of the PTZ features
and actuate automatically. For example, the system can au-
tomatically instruct a camera to zoom in when tracking a
slow-moving object. These actuation decisions need to be
coordinated between all user tasks.
Privacy preservation. Users of a video analytics sys-

tem can have different privileges to access the contents of
the video streams. For example, the security department
may have full access to the camera feeds, while the traffic
department cannot access sensitive information such as hu-
man faces. This requires the system to support the following
privacy-preserving features: (a) task admission control based
on the user role, and (b) video privacy-preserving techniques
(such as blurring and generative adversarial networks [32]).
Ideally, analytics tasks should be performed at the smallest
information granularity without violating privacy rules.

2.3 Pipeline Deployment and Execution
The synthesized video analytics pipelines for all submitted
tasks need to be deployed and executed efficiently, meet-
ing individual real-time performance and accuracy goals. In
particular, a system for deployment and execution needs to
consider the following aspects.
Locality. The computing infrastructure (spanning the

camera device, the edge, and the cloud) constitutes a con-
tinuum that presents a large space for locality-capability
tradeoffs. The system should leverage such tradeoffs when
deploying the operators from the video analytics pipelines
in order to make the most out of the available resources.

Environment-awareness. The edge and cloud platforms
are typically accessed via a network that exhibits variable
throughput and latency [37]. The deployment and execu-
tion of pipelines should be adapted continuously in order to
handle dynamic changes in the environment.

Performance guarantees. The system needs to meet the
performance goals for different tasks, e.g., tracking-based
tasks need to be performed in real-time, while a delay of a

few seconds might be acceptable when responding to search-
based tasks. Generally, service-level objectives (SLOs) for
latency and accuracy are specified individually per task and
need to be enforced during the pipeline deployment and
execution process.

3 Identifying the Gap
Video analytics are applied in various domains and have
therefore been widely studied. In the following, we present
a detailed gap analysis on how existing systems, to the
best of our knowledge, still fall short in meeting the pre-
viously discussed requirements. An overview of our anal-
ysis is shown in Tab. 1. At a high level, we divide exist-
ing video analytics systems into the following four major
categories: DL-based video databases, DL inference serv-
ing systems, domain-specific video analytic pipelines, and
generic video analytics engines. Requirements that do not
apply to some systems because of differences in target sce-
narios are marked by “–”. System requirements are marked
as partially supported ( ) if (a) they support queries that
take input from multiple cameras but do not exploit redun-
dancy across cameras (cross-camera requirement); (b) they
present event-matching windows but no lifetime support for
queries (temporality requirement) ; (c) they support pipelines
for multiple tasks but do not eliminate their redundancies
(cross-task requirement); (d) they guarantee privacy, but only
at a coarse-grained level (privacy requirement).
DL-based video databases store static video data and

allow users to perform analytics tasks in the form of “queries”
over the stored videos [3, 4, 19–21]. These systems typically
provide a declarative language (often a variant of SQL) for
submitting queries. These queries are generally one-shot
operations applied over (a part of) the stored videos and
do not consider any latency SLO guarantees. While queries
may look at video feeds from multiple cameras, support for
cross-camera tracking is lacking. Video database systems fo-
cus on optimizing query execution time through cross-task
optimizations (e.g., caching intermediate results of a query
for subsequent ones), content-awareness (e.g., adapting the
query execution based on previously explored content), and
data pre-processing techniques (e.g., NoScope [21] uses pre-
viously processed video annotations to train proxy models
that are cheaper for filtering video frames). Consequently,
these systems are powerful for offline video analytics but not
directly suitable for the live video setting. Regarding user
privacy, video database systems are designed with a binary
mentality (no access or full access) that lacks fine-grained
privacy control. An exception is Privid [4] which enforces
duration-based differential privacy, but only to aggregate
queries.
DL inference serving systems provide inference ser-

vices for DNN pipelines and multiple users with the goal
of high throughput and accuracy while meeting latency
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Table 1. Gap analysis for existing systems and our identified requirements.

Interface Cross-camera Temp. Cross-task Content-aware PTZ Privacy Locality Env.-aware SLO

DL-based video database systems
Viva [19] d○ – C –
Blazeit [20] d○ – C –
Miris [3] d○ – C –
Privid [4] d○ – C –

DL inference serving systems
Clipper [7] i○ – – C –
Nexus [29] i○ – – C –
InferLine [6] i○ – – C –

Domain-specific video analytics pipelines
Awstream [37] i○ E-C
Caesar [24] d○ D-E-C
Clownfish [26] i○ E-C
Amadeus [8] i○ E-C
Spatula [17] i○ D
Distream [36] i○ E-D

Generic video analytics engines
Gnosis [34] d○ E-C
Nguyen et al. [9] d○ D-E-C

d○: declarative, i○: imperative, : full support, : partial support, : no support, –: n/a, D: device (camera), E: edge, C: cloud

SLOs [6, 7, 29]. These systems expose an imperative interface
for users to describe their DNN inference pipelines that are
executed on a shared cloud platform equipped with high-
end accelerators (generally GPUs and TPUs). While video
analytics is typically treated as a representative use case,
DL inference serving systems lack several essential features
for live video analytics (e.g., temporality, content-awareness,
camera actuation, privacy, and locality).

Domain-specific video analytics pipelines are systems
that specialize in one specific live video analytics task by
deploying a tailor-made DL pipeline [8, 17, 24, 26, 36, 37]. De-
velopment tools such as Microsoft Rocket [25], and NVIDIA
DeepStream [27] have been introduced to simplify the de-
velopment of such DL pipelines. These systems are highly
optimized for a specific computer analytics task such as
object detection [37] or action recognition [24, 26], and pri-
marily focus on the efficient provisioning of a fixed-function
pipeline to meet real-time performance. Consequently, they
are hard to generalize to support arbitrary or multiple video
analytics tasks. Some of these systems explore cross-camera
similarities to reduce the computational workload [17], or
expose fine-grained control on user privacy privileges [8].
However, they cannot satisfy the diverse and dynamic needs
of different users and fall short in meeting the requirements
for cross-task optimization, content-awareness, and PTZ ac-
tuation.
Generic video analytics engines treat each analytics

task as a stream of operators (e.g., DL models) that need
to be executed in order to transform raw video data from
cameras into the results requested by users [9, 34]. Video an-
alytics engines like Gnosis [34], and the approach proposed

by Nguyen et al. [9] allow users to express queries with SQL-
like languages. However, no support for automatic synthesis
of video analytics pipelines is provided. While these sys-
tems are the closest to the live-video-analytics-as-a-service
vision, they do not account for key requirements, including
content-awareness, privacy preservation, and PTZ actuation.
Recently, Yi et al. [35] presented a vision for live video ana-
lytics that incorporates cross-camera and cross-task support.
However, their design lacks several important features that
we identified as critical such as intent-oriented interface,
content-awareness, and privacy preservation.

4 Vision and Challenges
After discussing the requirements of video analytics systems
and the gap in state-of-the-art approaches, we now present
our vision for live-video-analytics-as-a-service. In the fol-
lowing, we will sketch the design of our envisioned system
and identify the challenges that call for future exploration.

4.1 System Design Sketch
A high-level overview of the key components of our envi-
sioned system is sketched in Fig. 2. Our system consists of
three conceptual layers that take user-specified video an-
alytics tasks as input through a declarative interface, syn-
thesizes video analytics pipelines composed of DL models,
and deploys and executes these pipelines on the computing
platform, meeting user-provided performance objectives.

4.1.1 A declarative interface. We envision the use of
a declarative high-level language for users to specify their
tasks as queries without requiring any domain expertise on
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Figure 2. Sketch of the layered architecture of our envisioned
live-video-analytics-as-a-service system.

video analytics. Our language design allows users to specify
complex cross-camera analytics tasks across a customized
set of cameras (e.g., based on the camera location) and sup-
ports syntax for specifying SLO requirements. As a novel
feature, the language also allows users to declare the lifetime
of tasks (temporality requirement), which can be done in two
ways: (a) explicitly by time conditions like “for the next 20
min” or “indefinitely,” or (b) implicitly by content-dependent
conditions like “until a car has stopped for 10 min”. To illus-
trate, we list four basic types of queries that are supported
by our design:

• Object Recognition queries return the set of cameras
that have a specified object in it (e.g., “ find people
with covered face in the stadium’s grandstand for the
next two hours”)

• Limit queries return a set of cameras that have at least
a certain number of objects in it (e.g., “show every
camera from the highway with more than four SUVs
in it for the next 30 min”)

• Tracking queries return a set of cameras that track a
pre-specified object in it (e.g., “follow the car with the
global id of 102 for 10 minutes”)

• Action recognition queries return a set of cameras
where a specific action is happening in it (e.g., “show
cameras from stores where there are people shoplifting
during the opening hours”)

The user interface also includes an authentication service
for providing user credentials to the system.

4.1.2 An adaptive analytics engine. Our system includes
an adaptive analytics engine, which takes as input the queries
and automatically synthesizes video analytics pipelines. The
synthesis process is dynamic, i.e., the synthesized pipelines
are continuously adapted based on the status of the system’s
environment, and the current content of the camera feeds.

Automatic video analytics pipeline synthesis. The
analytics engine automatically generates a pipeline for each
received analytics task. It identifies which DL models are
needed, to which cameras they are applied to, and how they
are chained to accomplish the tasks. It does so by applying
optimizations (e.g., for DL model de-duplication) that ac-
count for cross-task and cross-camera similarities, as well
as task lifetimes. Finally, the engine can leverage the type
and requested information of a query to incorporate privacy-
preserving operators that provide privacy guarantees in a
more fine-grained way (e.g., enforce duration-based differ-
ential privacy for limit queries [4]).
Pipeline adaptation. The engine adapts to changing

environmental conditions and video contents by continu-
ously re-synthesizing the most suitable pipelines for all tasks
collectively. Different DL models may be preferred for differ-
ent environmental conditions to maximize accuracy while
respecting the user SLOs. Content-awareness, which is ben-
eficial in multi-camera scenarios under changing conditions
(as discussed in §2.2), is achieved by the engine through the
following aspects: (a) implicit lifetime of tasks steered by
content-dependent conditions, (b) cross-camera object move-
ments, and (c) PTZ support where cameras can actuate based
on the detected content.

4.1.3 An efficient runtime system. Finally, our design
features a runtime system that is responsible for deploy-
ing and executing the pipelines generated by the analytics
engine on the available compute resources. The goal is to
collectively meet the performance requirements (e.g., SLOs)
for all users while achieving maximum resource efficiency.
The runtime system accounts for the variability of the under-
lying compute (e.g., heterogeneous camera hardware) and
network platforms (e.g., changing network throughput) and
dynamically adapts the pipeline deployment [37]. Such adap-
tation can also explore tradeoff “knobs” like the DL model
batch size [29] and DNN architecture or variant [11] for a
particular operator in the pipeline. The runtime system also
deals with the operators’ reliability (e.g., recovering a faulty
operator) and network connectivity (e.g., camera connection
drops).

4.2 Challenges and Discussion
Incorporating the aforementioned new features and require-
ments into a video analytics system introduces various new
challenges for the system design. In the following, we de-
scribe those challenges and some possible features and tech-
niques that can be leveraged to address them.
How to explore cross-camera optimizations? The

engine can explore cross-camera similarities and identify
overlapping fields of view to reduce the amount of video
data that needs to be processed. However, identifying cam-
eras with overlapping fields of view is a challenging prob-
lem [10, 12]. The engine requires new lightweight techniques
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to efficiently identify similarities for large-scale deployments
where the amount of cameras is considerable. The problem
becomes even more challenging when overlapping fields
of view change over time due to the camera’s PTZ actua-
tion. Applying clustering techniques with cheaper feature
detection algorithms such as in [12] allied with the camera’s
subset expression might be a solution to reduce the cross-
camera similarity search space. Furthermore, cameras might
experience failures during execution (e.g., power outage or
connection loss), which need to be considered when iden-
tifying similarities. A possible solution could be to utilize
camera actuation to find new transformations for cameras
that can cover the region lost by the faulty cameras.

How to explore cross-query optimizations? A typical
approach for exploiting cross-query redundancies is sharing
of operators (i.e., DL models) and their outputs [15]. In our
design queries have individual lifetimes and, thus, distinct
arrival and finishing times. An adaption engine that utilizes
operator sharing but is agnostic of query lifetimemight make
sub-optimal placement and scheduling decisions. Our engine
must consider lifetime during the decision-making process
leading to a more complicated optimization process.

Another popular approach for improving resource utiliza-
tion when serving multiple users at the same time is input
batching for the DNN models [7, 29]. In cases where the user
SLOs provide some latency slack, an increase in individual
query latency is acceptable, and input batching can improve
the system’s overall throughput. Previous approaches de-
cide the best batch size by considering user SLOs and the
amount of video frames that need to be analyzed for a specific
DNN operator. However, these frameworks do not consider
an edge-cloud scenario where network bandwidth and la-
tency vary over time. Our runtime system now must also
consider environmental conditions for scheduling, operator
placement as well as choosing batch sizes.
How to enable adaptivity based on video content?

Our declarative interface provides the analytics engine with
information about the semantic objects that are required to
match user queries.When dynamically adapting the pipelines
for these queries, however, more information than these pro-
vided objects might be necessary. Identifying changes in the
camera content might require additional computer vision op-
erators to additionally extract object sizes, types, quantities,
and camera conditions. There are some possible techniques
to explore, such as background subtraction to detect light-
ing conditions of the background [14], or using specialized
models to better detect the appearances of a certain object
based on previously executed frames [21]. However, any ad-
ditional operator needs to be applied with high frequency to
the video data and, thus, should be as lightweight as possible
to avoid introducing computational overhead.

How to reconcile PTZ control decisions? Once the an-
alytics engine receives a query, it has to automatically under-
stand the task and how camera actuation for that task needs

to be performed, which may not be straightforward. Addi-
tionally, PTZ actuation for a single camera might conflict
when serving multiple tasks simultaneously. For example, if
multiple queries require a camera to analyze the same area
and one of those queries instructs the camera to zoom in onto
a certain object, the camera will lose the broader view of the
area and potentially compromise results for other queries.
An engine that is aware of this problem could compensate
by negotiating PTZ actuation between queries or by explor-
ing cross-camera similarities to identify alternative cameras
that can provide the missing information. Alternatively, the
engine can decide to prioritize actuation from users with
higher privileges or more important SLOs.

How to achieve fine-grained privacy protection? Our
system utilizes privacy-preserving operators to create secure
streams of video data and semantic objects. Care must be
taken when sharing these streams between users because
they might not share the same access privileges. Further,
those privacy-aware operations are generally more com-
putationally expensive and ultimately lead to larger delays
during pipeline execution [8]. Our adaptation engine must
acknowledge varying user privileges as well as additional
latency costs from choosing privacy-aware operators when
synthesizing and adapting pipelines. Overall, this leads to
a much more complicated decision-making process. Finally,
the runtime has to provide the best operation scheduling and
computation offloading strategy while considering privacy
requirements (e.g., by executing queries with higher privacy
concerns more often on the edge instead of in the cloud).

5 Conclusion
Driven by the recent use cases of live video analytics, we
tackle the unprecedented complexity of deploying live video
analytics pipelines when facing users with diverse and dy-
namic needs. Based on identifying the requirements and ana-
lyzing the pitfalls of existing systems, we present our vision
of a live-video-analytics-as-a-service system that features
a declarative interface with lifetime support, an adaptive
analytics engine that synthesizes and adapts video analytics
pipelines automatically applying cross-task, cross-camera op-
timizations and supporting privacy and PTZ features, and an
efficient runtime system to handle the execution of pipelines
across the device-edge-cloud computing continuum, achiev-
ing both performance guarantee and resource efficiency.
We highlight that our vision poses multiple important

challenges that would require further exploration by the
research community.
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