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DNNs are becoming a critical part of modern applications
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Applications have to offload DNNs to edge servers
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Applications need timely predictions
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• end-to-end latency service-level objectives (SLOs)  
(e.g., 100ms) that include network time to transfer data

• the application’s desired request rate (e.g., 25 FPS)

Edge-serving systems should support…

• multiple clients and their aggregate request rate on  
fixed compute resources, e.g., via request batching



Data transfer from clients shows significant variable delays
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Big spikes in network time (up to seconds)

Data transfer over a network connection emulated with an LTE trace

How to handle variable network delays to serve requests on time?



Use data adaptation on the client side
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• Adapt the data size based on the available network bandwidth (e.g., [AWStream, SIGCOMM’18]) 

+ Smooths out big spikes leading to more stable throughput 
-  Still significant variable delays causing variable compute budget on the server side
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How to timely serve inference requests given a variable compute budget?



Use DNN adaptation on the server side

• Deploy DNN variants with different latency-accuracy tradeoff profiles  

• Select a DNN variant for a given compute budget
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DNN variant selected when the compute 
budget time is < 100ms and > 50ms

e.g., [ALERT, ATC’20] [SubFlow, RTAS’20]



Challenges in combining data and DNN adaptation
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Challenges in combining data and DNN adaptation
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• C1  Misaligned adaptation decisions

Case 1: Bigger data size and smaller DNN input size

DownscalingData 
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DNN 
Adaptation

Leads to a waste 
of extra network 
time (100-150ms)
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• C1  Misaligned adaptation decisions
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Case 2: Smaller data size and bigger DNN input size
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Challenges in combining data and DNN adaptation
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• C1  Misaligned adaptation decisions

• C2  Un-coordinated adaptations for multiple clients

Case 1: Bigger data size and smaller DNN input size

Case 2: Smaller data size and bigger DNN input size

Downscaling
Leads to a waste 
of extra network 
time (100-150ms)

Leads to accuracy 
degradation[1]

Client 1
Client 2

Client N

Data 
Adaptation

DNN 
Adaptation

[1] [Dengxin Dai, et. al., WACV’16] 

No resource capacity  
to run separate DNNs  
for every client

Upscaling



Introducing…



• Defines latency SLO in an end-to-end fashion, taking into account the variable network time 
  

• Utilizes data and DNN adaptation jointly and aligns their adaptation decisions 

• Coordinates adaptation decisions for multiple clients, a.k.a. collective adaptation 

• Supports batching for resource efficiency 

Jellyfish
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An edge-centric serving system for dynamic edge networks with timeliness as a goal

Edge-serving systemInference  
requests

Clients



Jellyfish has to solve a complex scheduling problem
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1. Selection of a few DNN variants on a limited 
amount of compute resources 

2. Mapping every client (their requests) to the 
selected DNN variants 

3. Deciding the batch size of every DNN variant for 
serving multiple clients 

4. Informing clients about their mapped DNN and 
data sizes

Solve continuously without violating end-to-end latency SLO

Edge server
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4. Data size  
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2. Client-DNN  
mapping

1. DNN Selection

The scheduling problem involves multiple complex steps
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Formulate the problem as a mixed-integer linear program (MILP)

19

Existing MILP solvers take around  
20 seconds to 15 minutes 

With 4 threads, 4 GPU workers, 16 
DNNs, 16 Clients, and batch size 12 

Not feasible to run in real-time (sub-seconds)

How to solve the scheduling problem continuously in real-time?

Maximize overall accuracy

Satisfy latency & throughput constraints



Jellyfish decomposes the problem into two sub-problems
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A. Client-DNN mapping
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DNNs
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Batch Size 4 1

B. DNN selection

• Optimize accuracy 
• Satisfy latency & throughput constraints

Compute 
Resources

• Optimize accuracy  
• Serve a maximum number of requests

M1DNNs 
Variants

M2 M3

G1 G2

C1 C4 C5 C2 C3
M1M2



A. Client-DNN mapping
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As a standard 0-1 knapsack problem

C1 C2 C3 C4 C5 Clients

Request  
Rates
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Items with weights

M1DNN
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Throughput 60

Fit{ {

Knapsack with a  
capacity of 60

But we have to solve the standard knapsack problem for every batch size

M1

C2 C3 C4

Solution



A. Client-DNN mapping
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One-shot dynamic programming to solve for all batch sizes in one go
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• To optimize accuracy, we first map clients on a bigger DNN and then the remaining clients on smaller DNNs 
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B. DNN selection
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An iterative search process

Searching r DNN instances from a DNNs zoo with 
n DNN variants is combinatorial:  (n + r - 1

r )
• Exhaustively searching for the DNN set from all possible 

combinations of DNN variants can become expensive 

• An iterative search process that uses the  
client-DNN mapping to evaluate DNN sets 

• Simulated annealing (SA) to search for the next set  
of DNN instances

client-DNN mapping Next DNNs set

Evaluate Search

Iterative process



How well does Jellyfish perform?



Experimental setup
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Jellyfish is evaluated on a popular video analytics task and real-world network traces
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• Task: vehicle object detection 
• Videos: three traffic videos 10min each 

Metrics  
• Analytics accuracy: standard F1 score 
• Miss rate: latency SLO violations 

Clients Configuration 
• Number of clients: {1, 2, 4, 8} 
• SLOs: {75, 100, 150} milliseconds (ms) 
• FPS: {15, 25} 

Server Configuration 
• GPUs: 2 RTX2080Ti 
• DNNs: 16 YOLOv4 variants



End-to-end performance on synthetic network trace
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• Achieves extremely low miss rates ( 1%) when 
the system is not overloaded 

≤

• Maintains high accuracy by selecting bigger 
DNNs whenever possible

• Maintains high worker utilization (up to 75%) 
when the system becomes more saturated
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Comparison with baselines on three network traces
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Server: 
• Scheduler: EDF-like [Clockwork, OSDI’20] 
• Three baseline variants: lowest DNN (B_L), 

middle DNN (B_M), and biggest DNN (B_H) 

Client: 
• Data adaptation: Bandwidth-aware 

[AWStream, SIGCOMM’18]
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Comparison with baselines on three network traces
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• Jellyfish adaptively selects optimal 
DNNs and thus achieves low miss 
rates while maintaining high accuracy

• Baselines with bigger static DNNs have higher miss rates 

• Baselines with smaller static DNNs have lower miss rates but 
also lower accuracy 

Server: 
• Scheduler: EDF-like [Clockwork, OSDI’20] 
• Three baseline variants: lowest DNN (B_L), 

middle DNN (B_M), and biggest DNN (B_H) 

Client: 
• Data adaptation: Bandwidth-aware 

[AWStream, SIGCOMM’18]



Jellyfish scheduler is near-optimal and runs in real-time
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• The approximation ratio compared to MILP 
ranges from 0.966 to 0.996

• For up to 8 GPUs and 32 clients, the scheduler has 
running times less than seconds
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• The approximation ratio compared to MILP 
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Discussion and future work

• Request rate adaptation is not incorporated in the current version 

• Compute budget estimation depends on the accurate estimation of  
compressed data size, which is difficult due to the changing data content 

• The system must be tuned for stable performance (i.e., for predictability) 
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Summary

• Timely inference serving over dynamic edge networks is important and challenging 

• We propose Jellyfish which… 

- aims to fulfill end-to-end latency SLOs specified over the variable network time and DNN inference time 

- employs data and DNN adaptation jointly and coordinates adaptation decisions for multiple clients 

- achieves extremely low latency SLO violations while maintaining high accuracy 
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Contact: Vinod Nigade 

Email id: v.v.nigade@vu.nl 

Source code: https://github.com/vuhpdc/jellyfish

mailto:v.v.nigade@vu.nl
https://github.com/vuhpdc/jellyfish


Extra slides



DNN selection
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Unlike conventional SA, Jellyfish has two sequential modes of operation

1. DEGRADE

• upgrade DNNs to  
maximize the overall accuracy

• degrade DNNs to serve  
desired number of clients

2. UPGRADE

Previous  
DNNs set

New  
DNNs set

Client-DNN  
Mapping

Generate Next 
DNNs Set

Stop or Next 
Iteration

Accept or Reject 
Solution

for evaluation

Input  
DNNs set

Output  
DNNs set

Customised SA



More details in the paper

• DNN pre-fetching technique to minimize DNNs switching cost 

• Client’s bandwidth estimation 

• System design
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Comparison to independently running data and DNN adaptation
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• Without proper coordination and alignment between data and 
DNN adaptation, we see high miss rates or low accuracy

Data adaptation 
• DAoff: disabled 
• DAbw: bandwidth-aware  
• DAslo: bandwidth and slo-aware 

DNN adaptation: 
• CB50%: 50% of the SLO as compute budget 
• CB75%: 75% of the SLO as compute budget 



Performance on a large-scale setup with LTE trace 
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Clients Configuration 
• Number of clients: {8, 16, 24, 32} 
• SLOs: {100, 150} milliseconds (ms) 
• FPS: 15 
• AWS instance: t3.2xlarge 

Server Configuration 
• GPUs: 8 distributed NVIDIA T4 
• Worker AWS instance: g4dn.2xlarge 
• Dispatcher & scheduler AWS instance: c5.9xlarge  

• Jellyfish achieves miss rates within the acceptance range (1-3%), 
even on a large-scale setup with unstable inference timings


