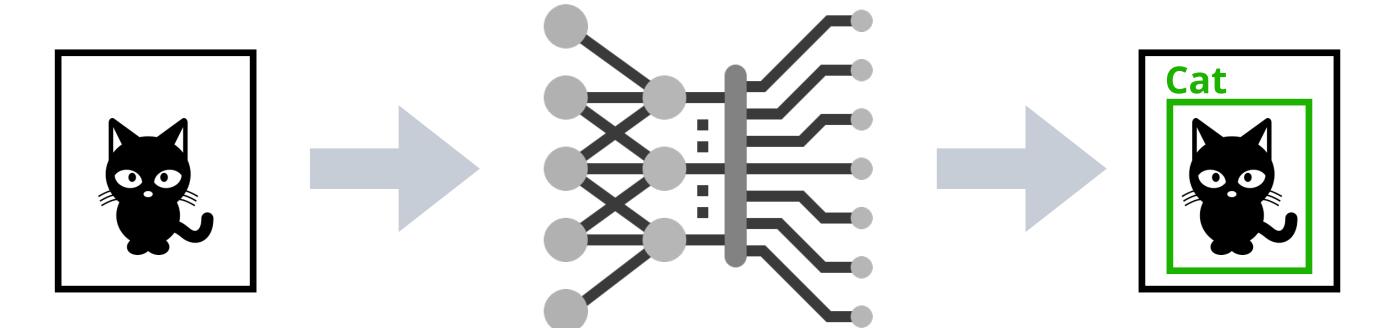
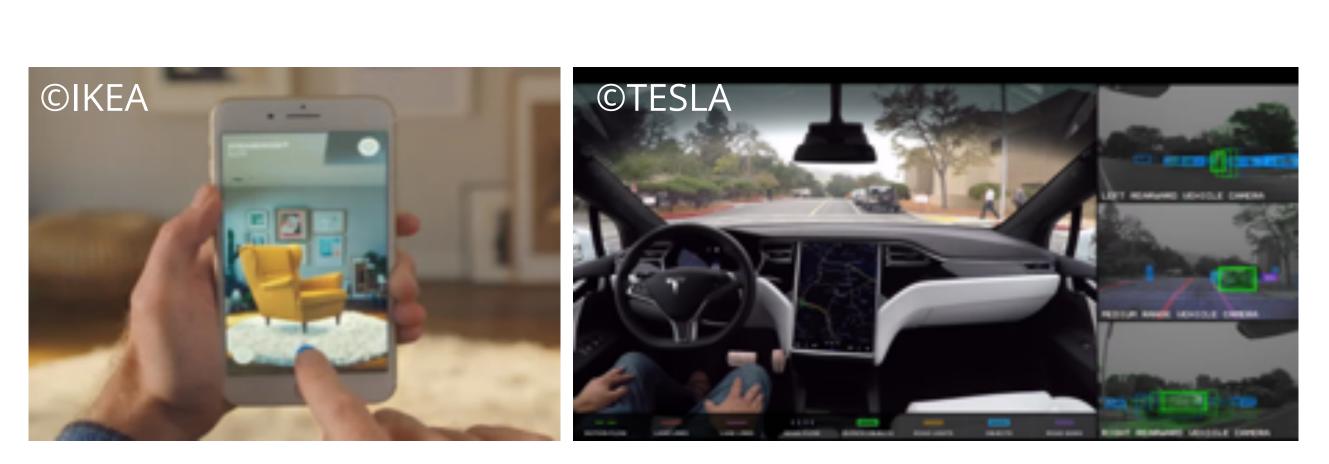
Jellyfish: Timely Inference Serving for Dynamic **Edge Networks**

Vinod Nigade, Pablo Bauszat, Henri Bal, Lin Wang Vrije Universiteit Amsterdam

IEEE RTSS 2022

DNNs are becoming a critical part of modern applications





Augmented Reality

Applications

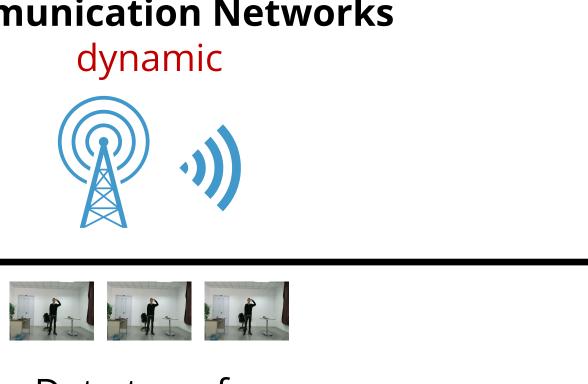
Deep Neural Networks (DNNs)

Autonomous Driving

Applications have to offload DNNs to edge servers

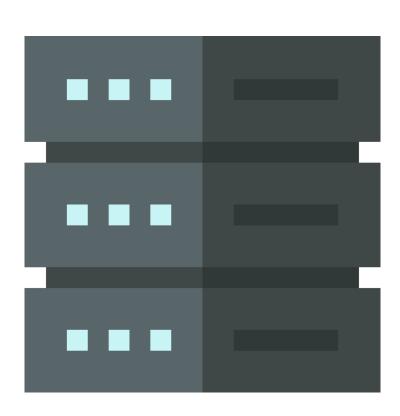
End Devices limited compute capabilities

·

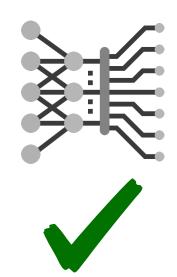


Data transfer

Edge Servers powerful compute



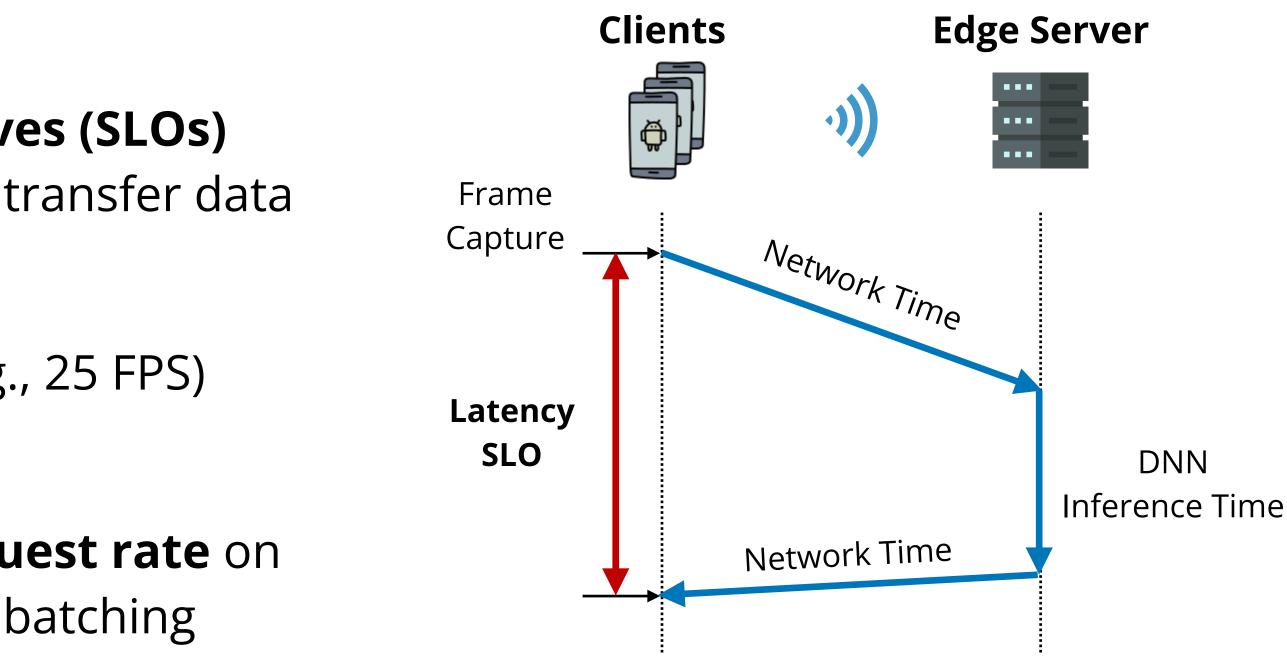
DNNs large and accurate



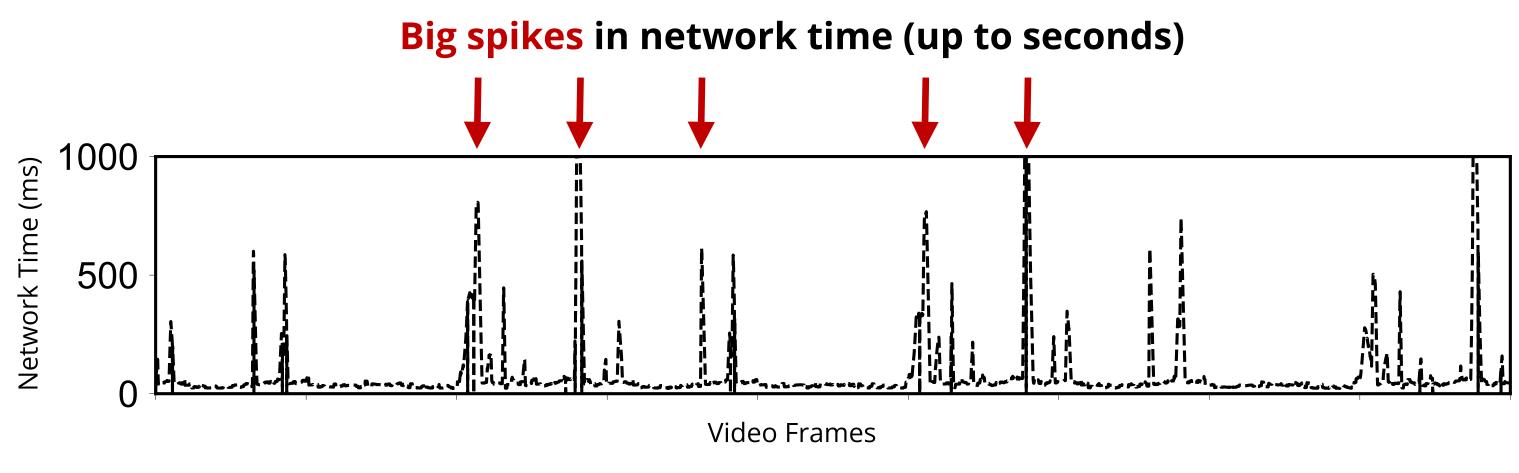
Applications need timely predictions

Edge-serving systems should support...

- end-to-end latency service-level objectives (SLOs) (e.g., 100ms) that include network time to transfer data
- the application's desired **request rate** (e.g., 25 FPS)
- multiple clients and their aggregate request rate on fixed compute resources, e.g., via request batching



Data transfer from clients shows significant variable delays

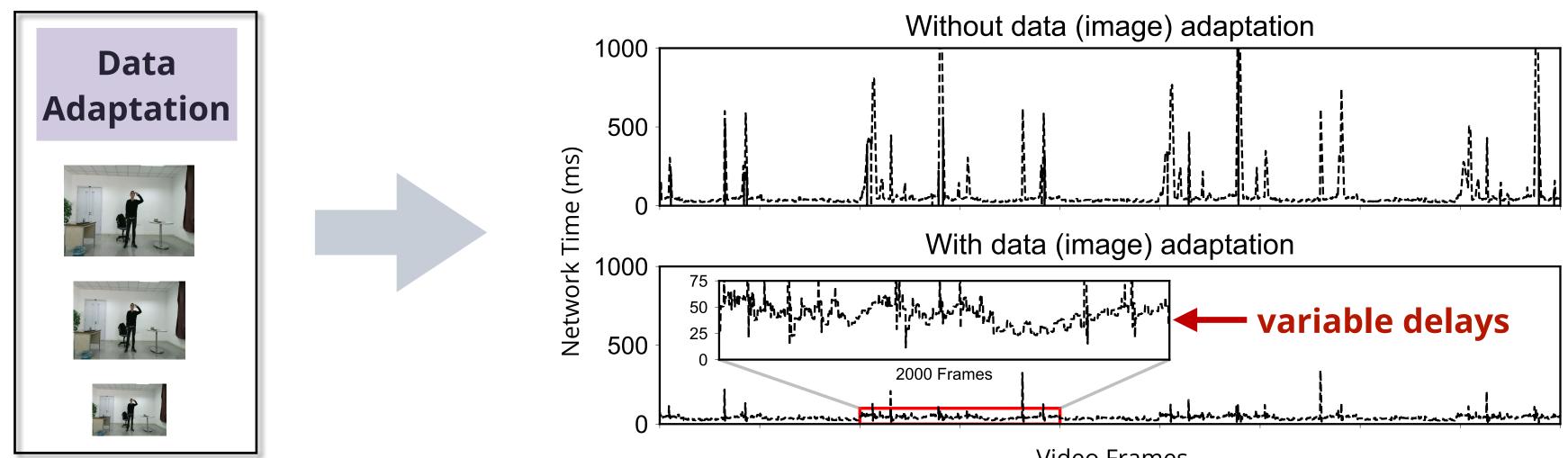


Data transfer over a network connection emulated with an LTE trace

How to handle variable network delays to serve requests on time?

Use data adaptation on the client side

- Adapt the data size based on the available network bandwidth (e.g., [AWStream, SIGCOMM'18])
 - + Smooths out big spikes leading to more **stable throughput**
 - Still significant variable delays causing variable compute budget on the server side



How to timely serve inference requests given a variable compute budget?

Video Frames

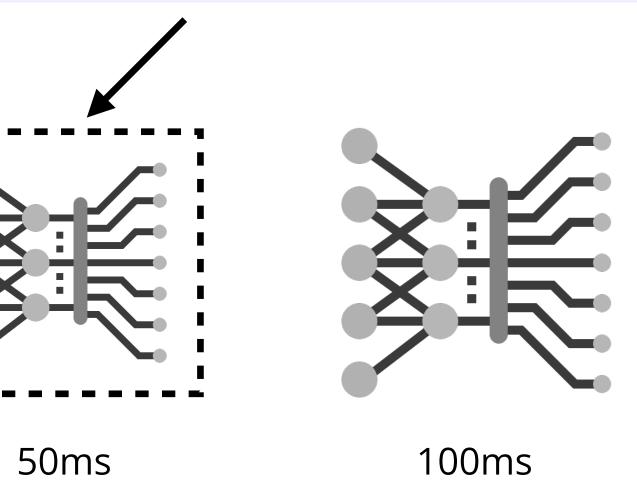
Use DNN adaptation on the server side

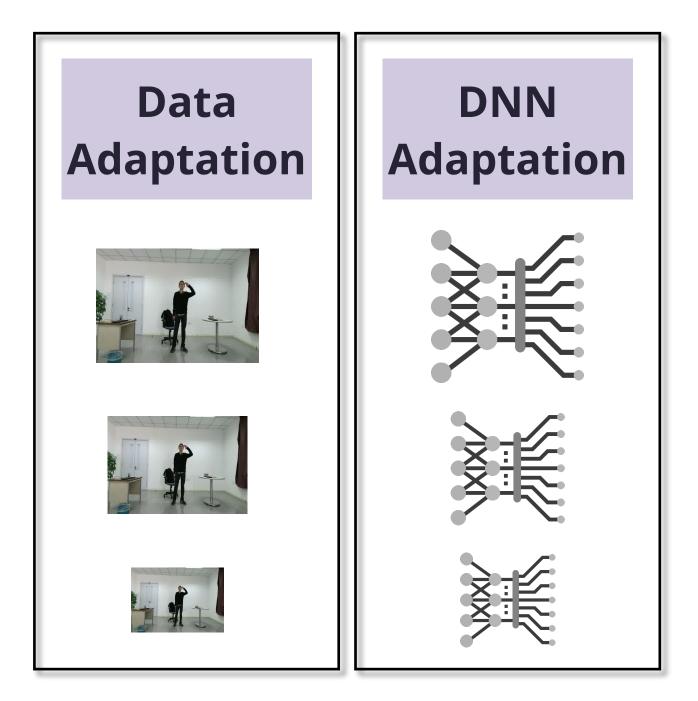
- Deploy DNN variants with different latency-accuracy tradeoff profiles
- Select a DNN variant for a given **compute budget**

Inference Latency

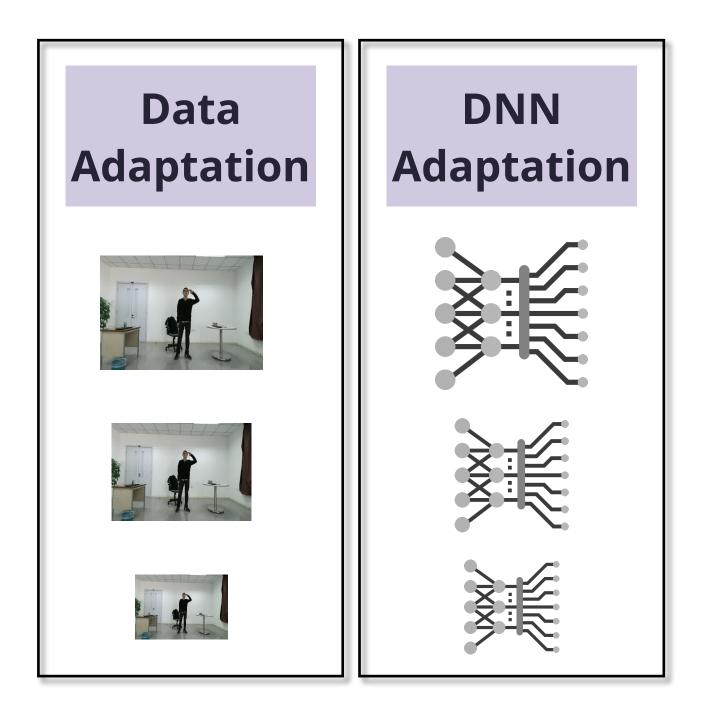
10ms

e.g., [ALERT, ATC'20] [SubFlow, RTAS'20]





- C1

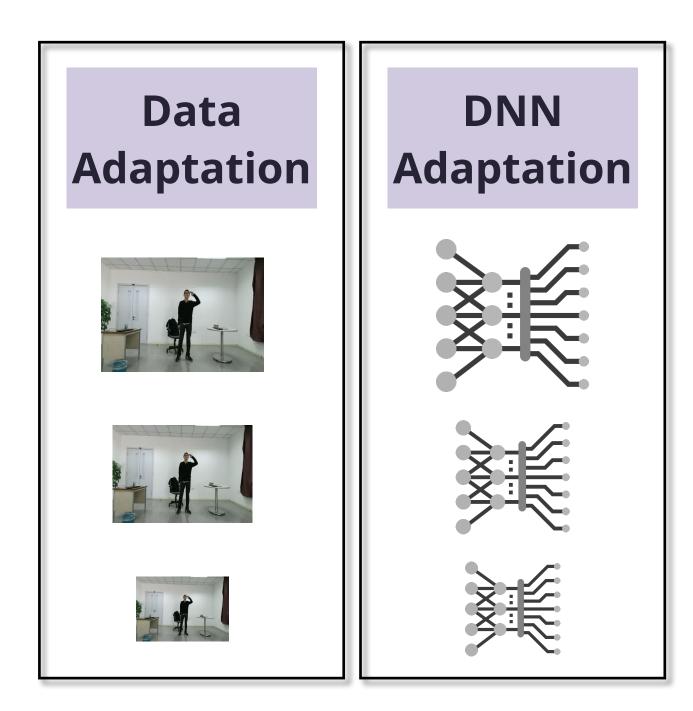


Misaligned adaptation decisions

Case 1: Bigger data size and smaller DNN input size

Leads to a waste of extra network time (100-150ms)

- C1



[1] [Dengxin Dai, et. al., WACV'16]

Misaligned adaptation decisions

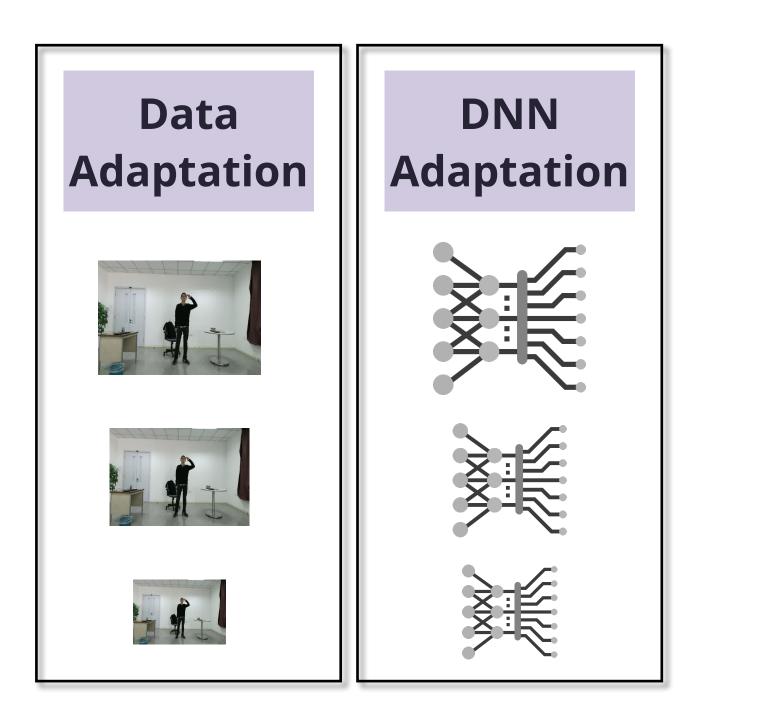
Case 1: Bigger data size and smaller DNN input size

Case 2: Smaller data size and bigger DNN input size

of extra network time (100-150ms)

Leads to a waste

Leads to accuracy degradation^[1]



[1] [Dengxin Dai, et. al., WACV'16]

Misaligned adaptation decisions

Case 1: Bigger data size and smaller DNN input size

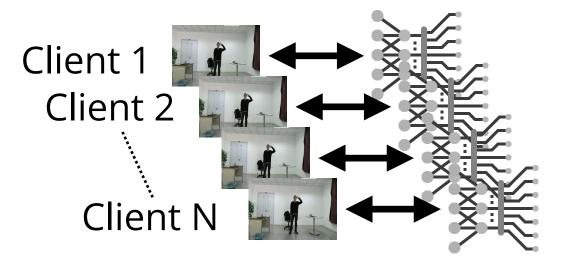
of extra network time (100-150ms)

Leads to a waste

Case 2: Smaller data size and bigger DNN input size

Leads to accuracy degradation^[1]

• C2 Un-coordinated adaptations for multiple clients



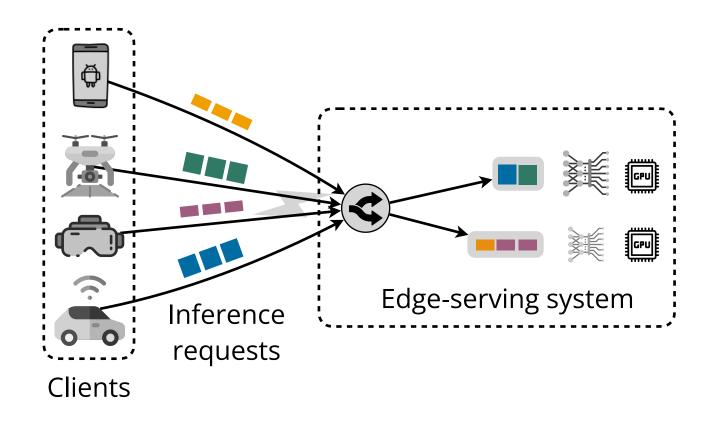
No resource capacity to run separate DNNs for every client

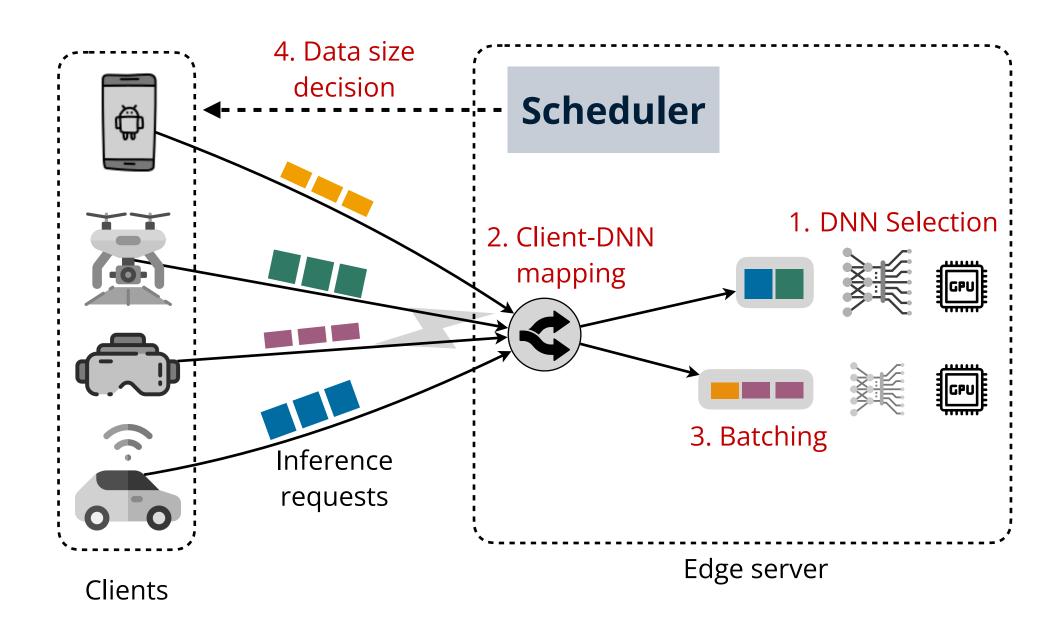
Introducing...

Jellyfish

An edge-centric serving system for dynamic edge networks with timeliness as a goal

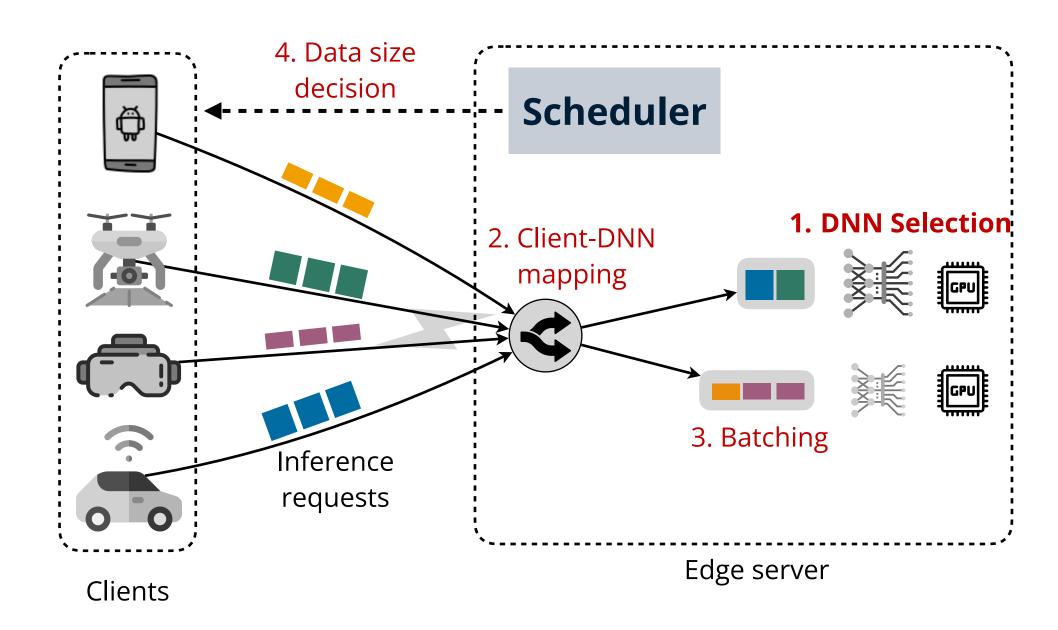
- Defines latency SLO in an end-to-end fashion, taking into account the variable network time
- Utilizes data and DNN adaptation jointly and aligns their adaptation decisions
- Coordinates adaptation decisions for multiple clients, a.k.a. collective adaptation
- Supports **batching** for resource efficiency





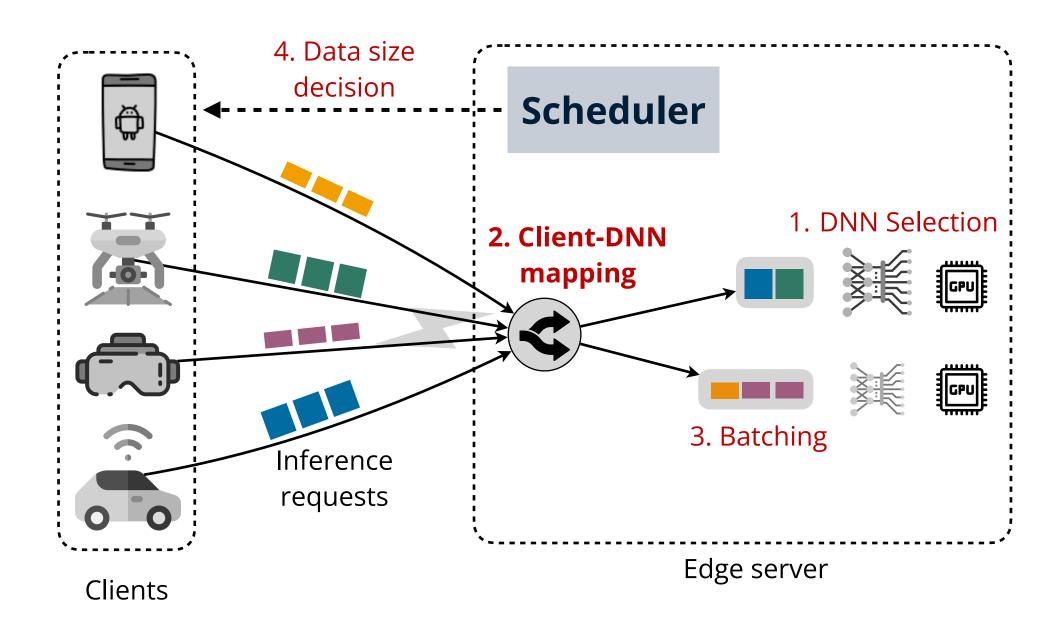
The scheduling problem involves **multiple complex steps**

- 1. Selection of a few DNN variants on a limited amount of compute resources
- 2. Mapping every client (their requests) to the selected DNN variants
- 3. Deciding the batch size of every DNN variant for serving multiple clients
- 4. Informing clients about their mapped DNN and data sizes



The scheduling problem involves **multiple complex steps**

- 1. Selection of a few DNN variants on a limited amount of compute resources
- 2. Mapping every client (their requests) to the selected DNN variants
- 3. Deciding the batch size of every DNN variant for serving multiple clients
- 4. Informing clients about their mapped DNN and data sizes

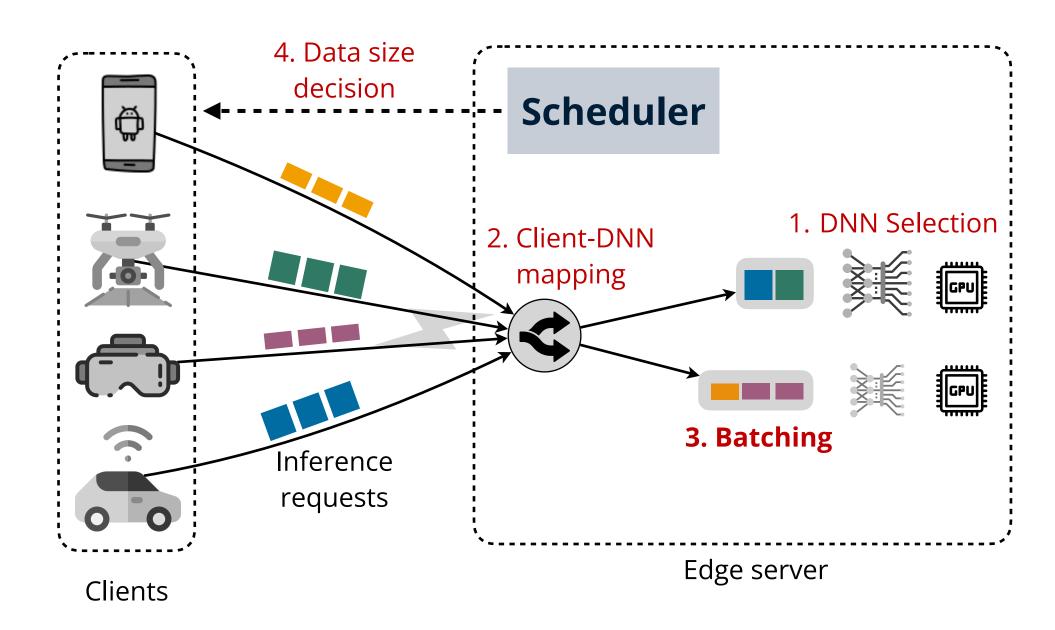


The scheduling problem involves **multiple complex steps**

1. Selection of a few DNN variants on a limited amount of compute resources

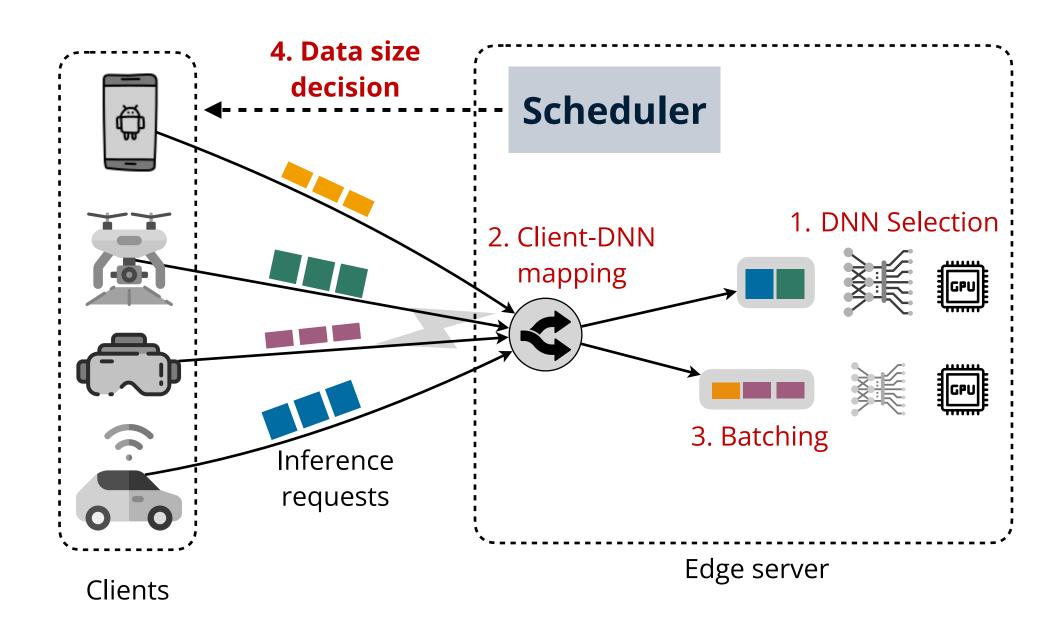
2. Mapping every client (their requests) to the selected DNN variants

- 3. Deciding the batch size of every DNN variant for serving multiple clients
- 4. Informing clients about their mapped DNN and data sizes



The scheduling problem involves **multiple complex steps**

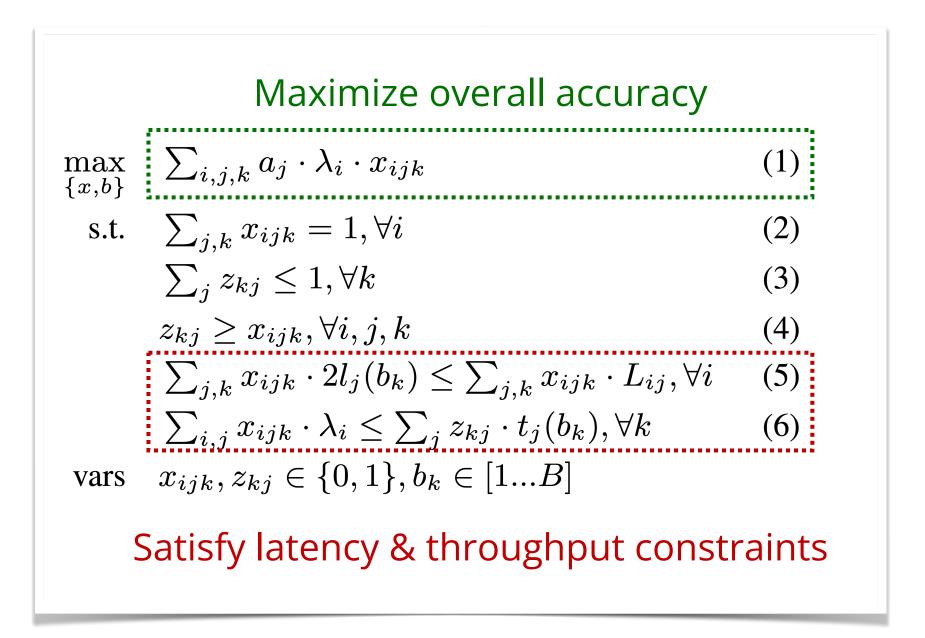
- 1. Selection of a few DNN variants on a limited amount of compute resources
- 2. Mapping every client (their requests) to the selected DNN variants
- 3. Deciding the batch size of every DNN variant for serving multiple clients
- 4. Informing clients about their mapped DNN and data sizes



The scheduling problem involves **multiple complex steps**

- 1. Selection of a few DNN variants on a limited amount of compute resources
- 2. Mapping every client (their requests) to the selected DNN variants
- 3. Deciding the batch size of every DNN variant for serving multiple clients
- 4. Informing clients about their mapped DNN and data sizes

Formulate the problem as a mixed-integer linear program (MILP)



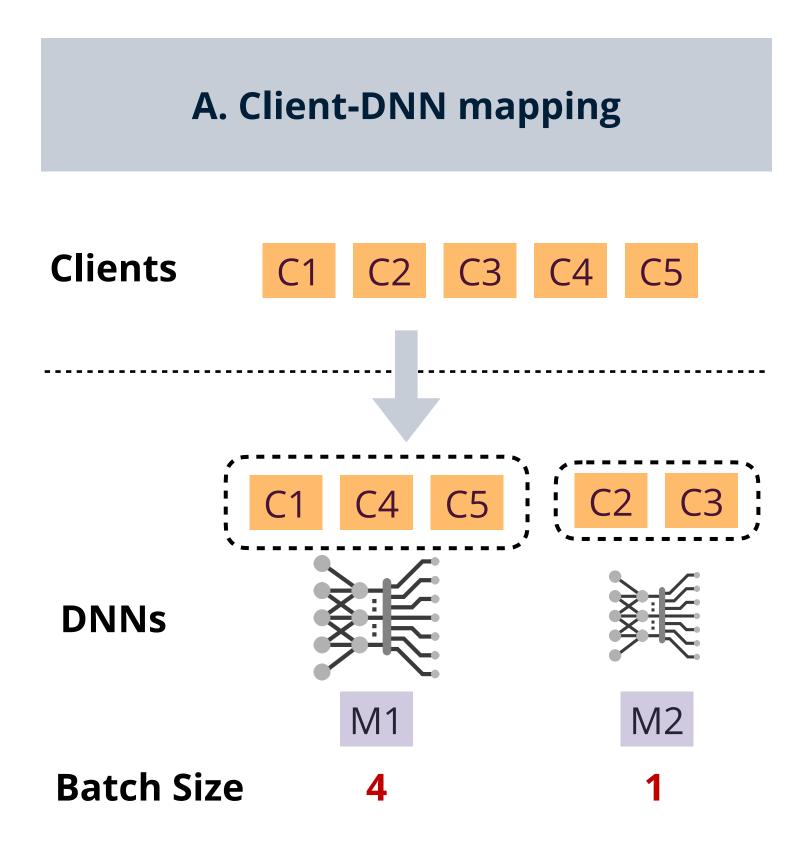
How to solve the scheduling problem continuously in real-time?

Not feasible to run in real-time (sub-seconds)

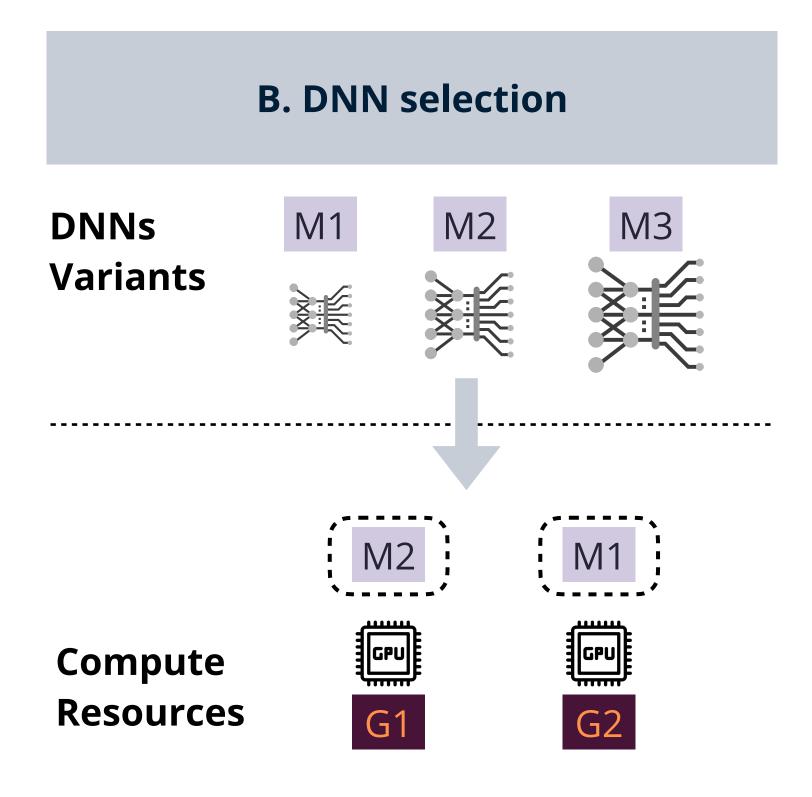
Existing MILP solvers take around 20 seconds to 15 minutes

With 4 threads, 4 GPU workers, 16 DNNs, 16 Clients, and batch size 12

Jellyfish decomposes the problem into two sub-problems

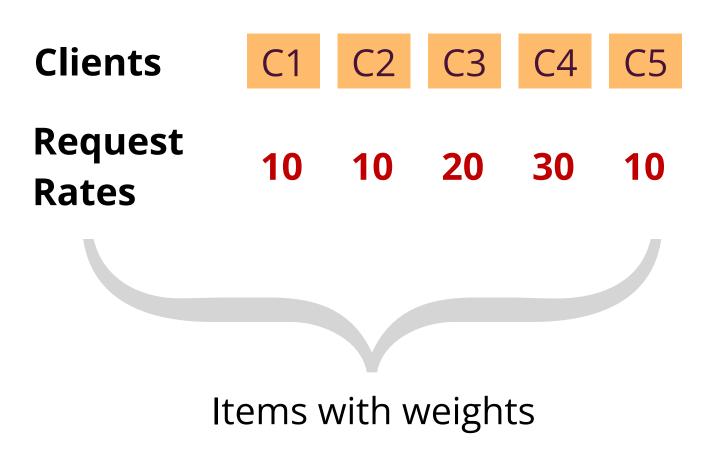


- Optimize accuracy
- Satisfy latency & throughput constraints

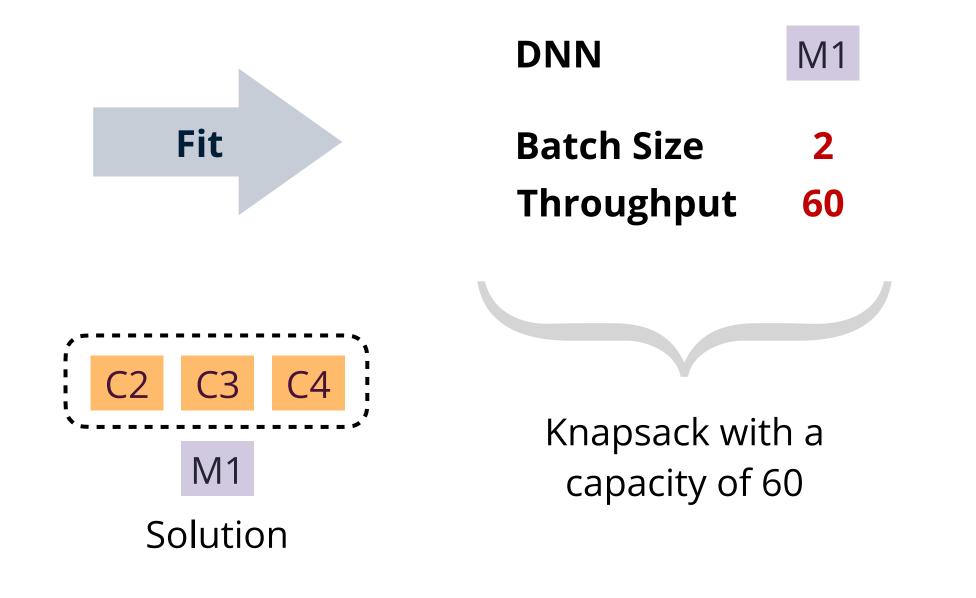


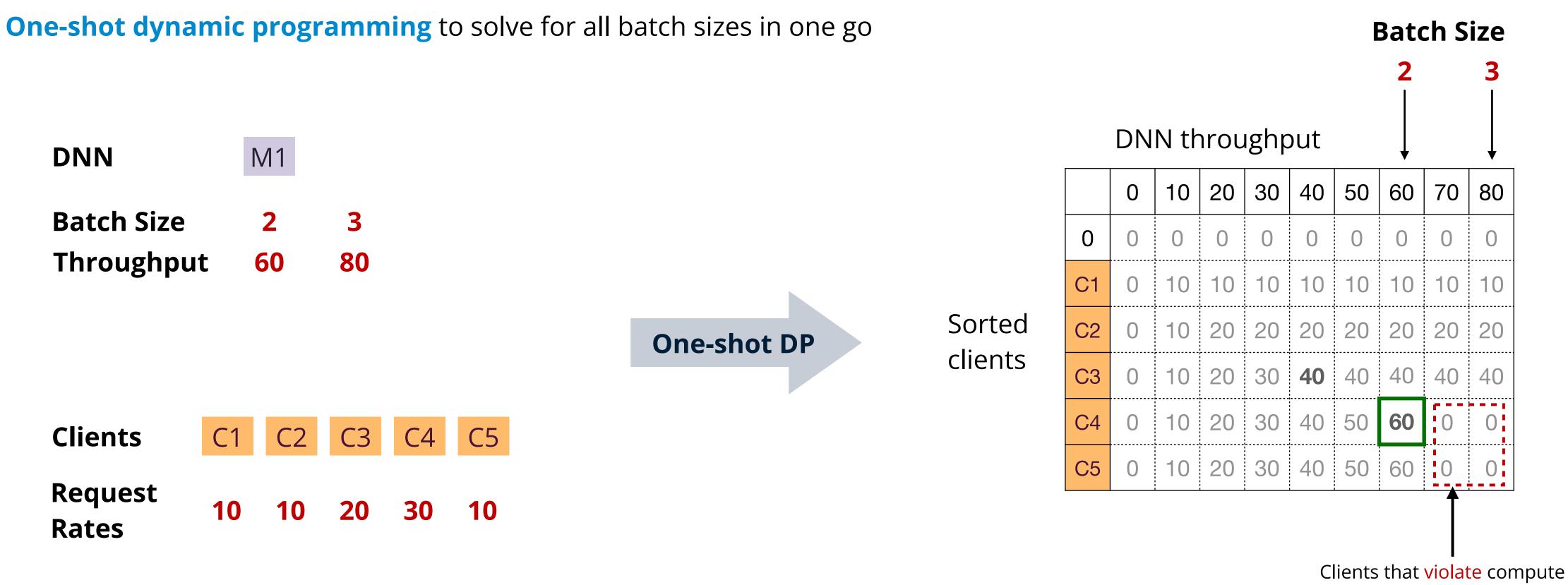
- Optimize accuracy
- Serve a maximum number of requests

As a standard 0-1 knapsack problem

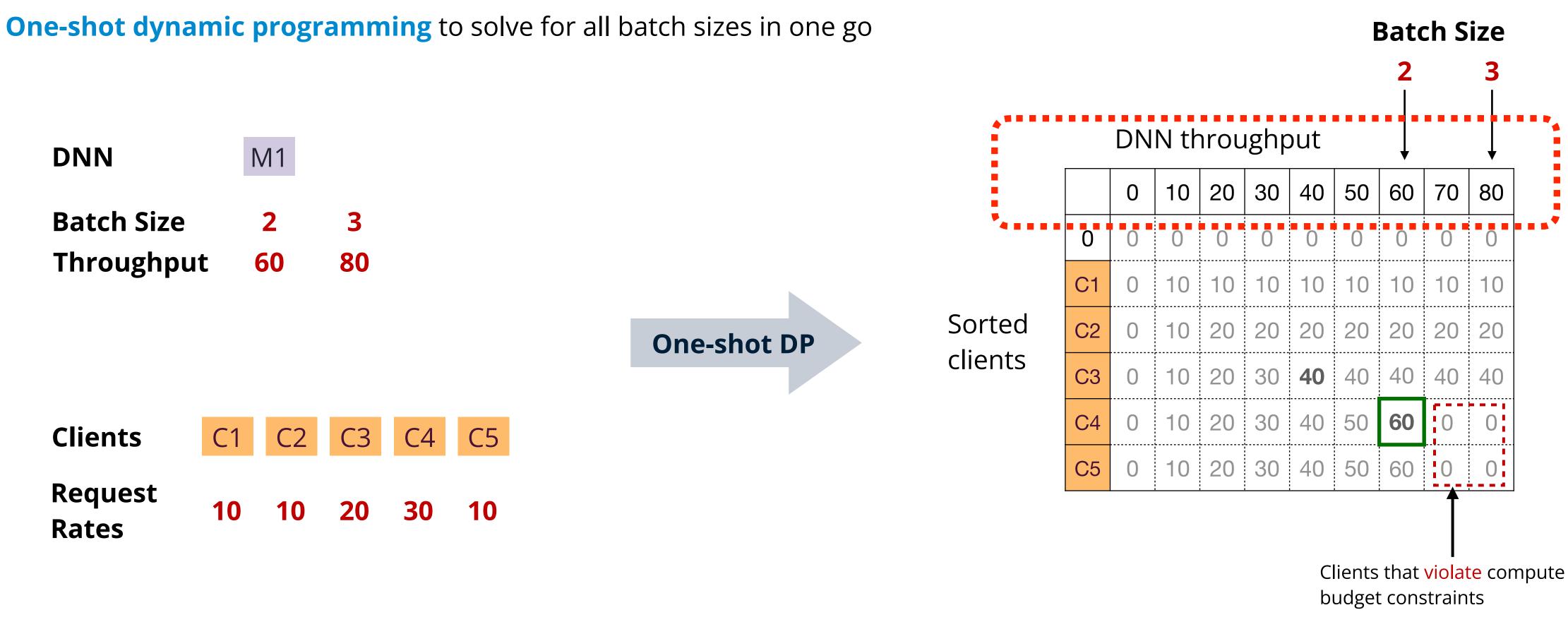


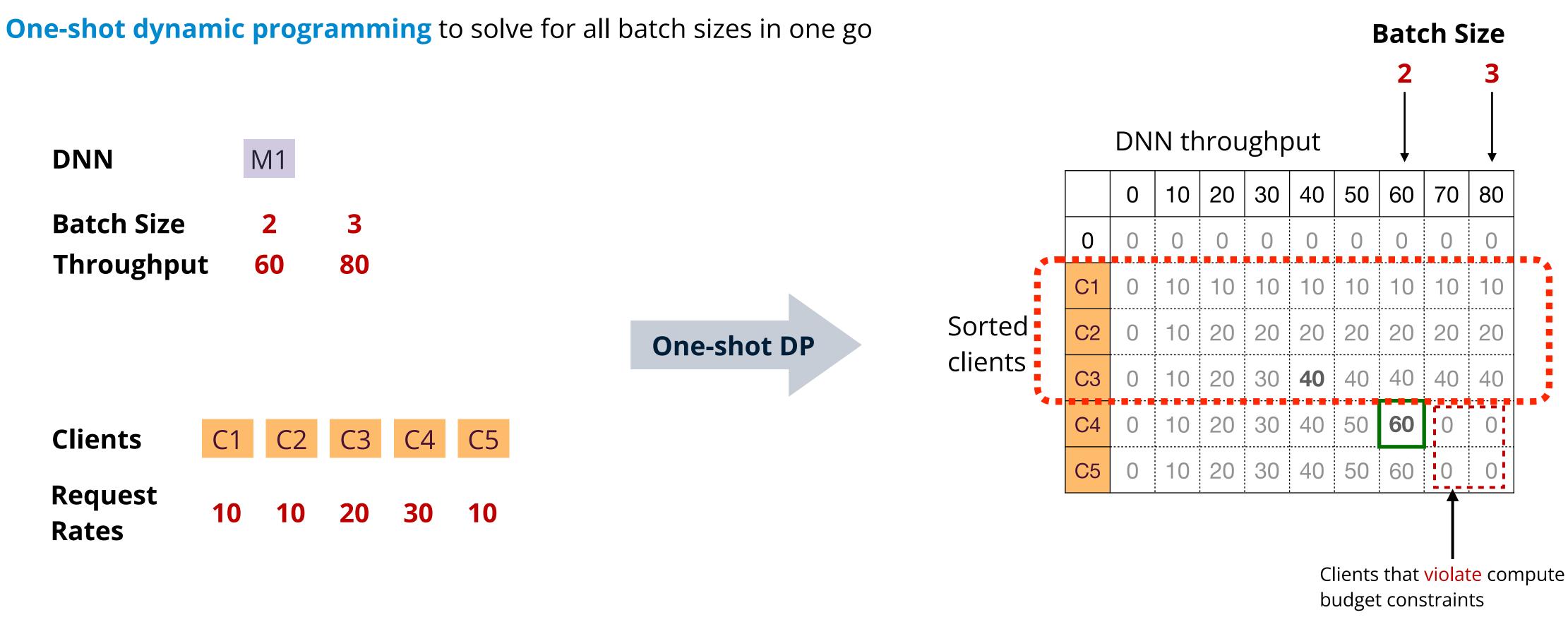
But we have to solve the standard knapsack problem for every batch size

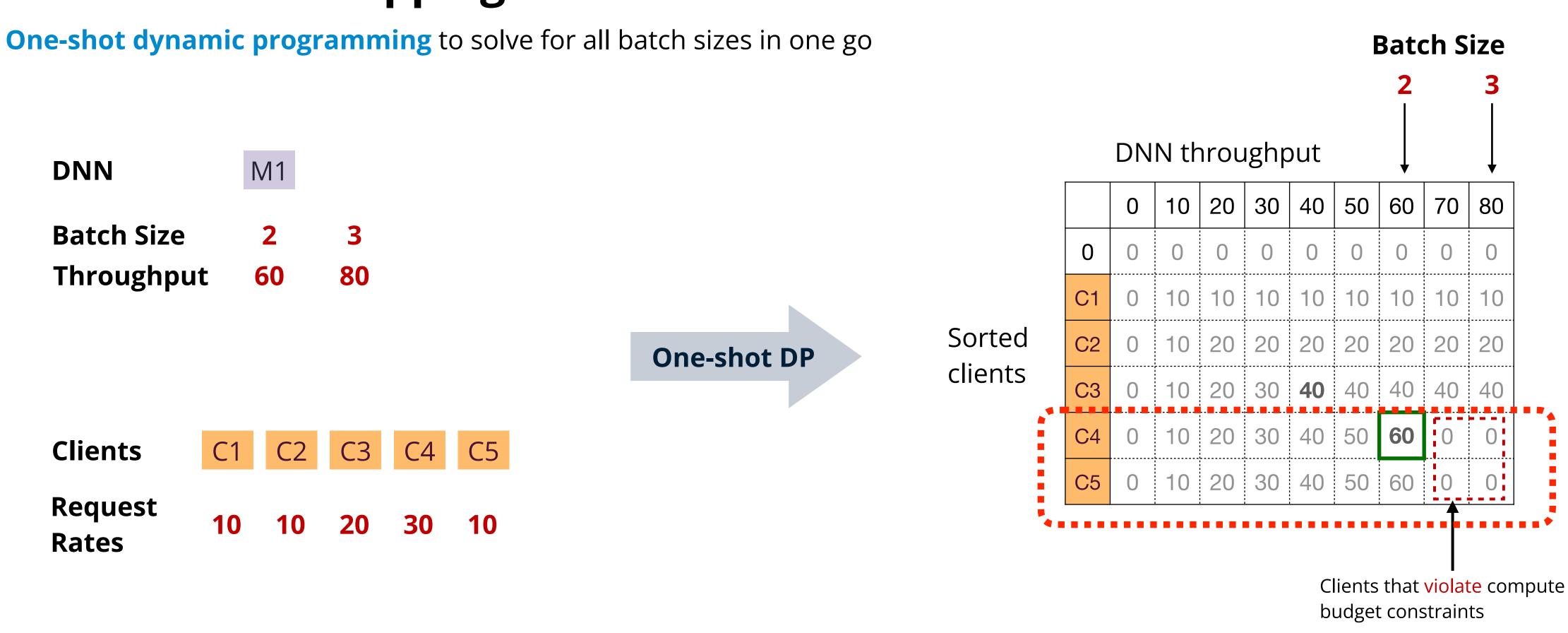




budget constraints







B. DNN selection

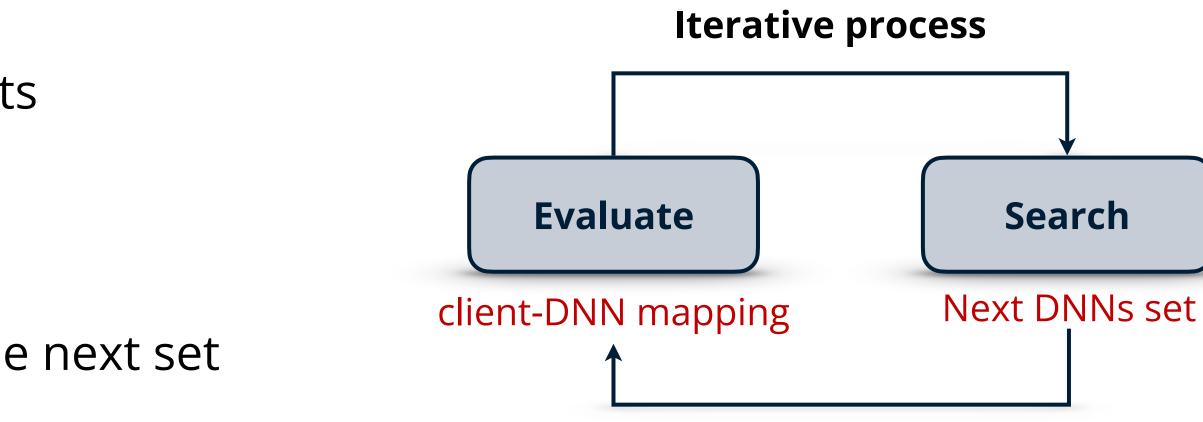
An iterative search process

• Exhaustively searching for the DNN set from all possible combinations of DNN variants can become **expensive**

• An iterative search process that uses the client-DNN mapping to evaluate DNN sets

• Simulated annealing (SA) to search for the next set of DNN instances

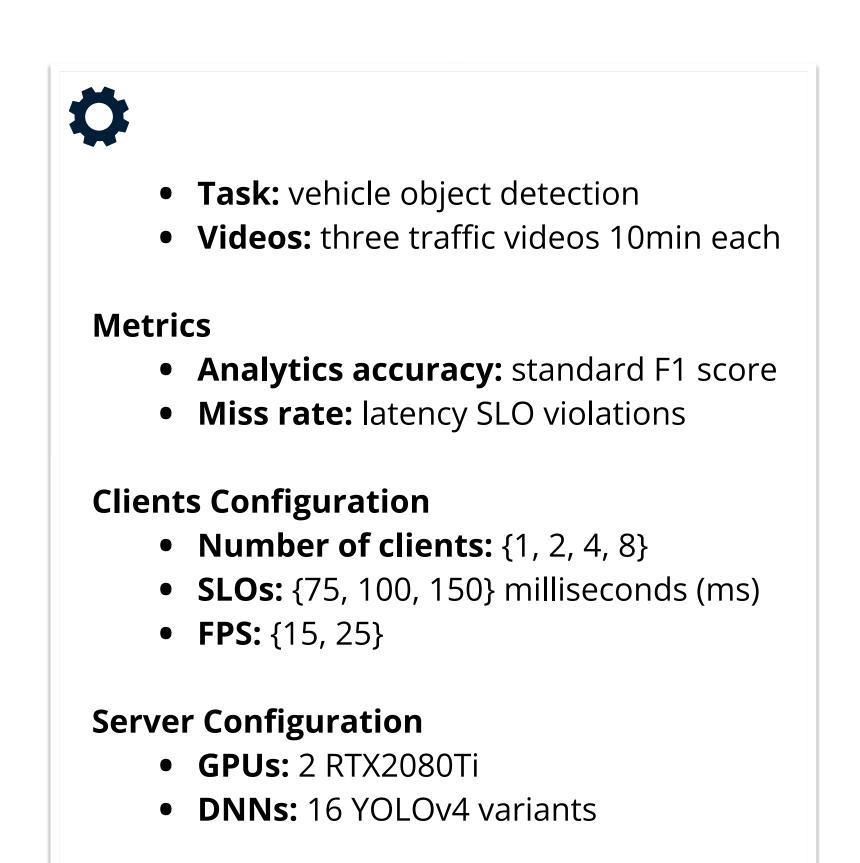
Searching **r** DNN instances from a DNNs zoo with **n** DNN variants is **combinatorial**: (n + r - 1)

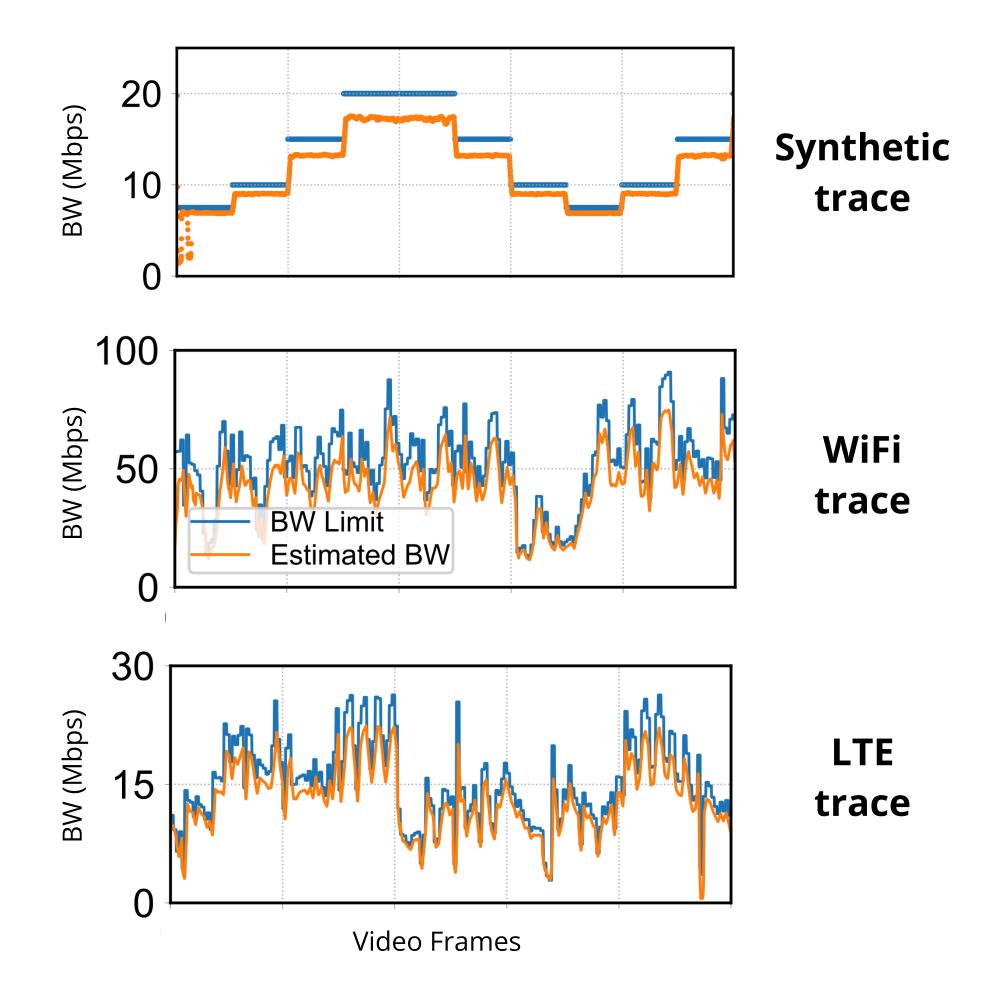


How well does Jellyfish perform?

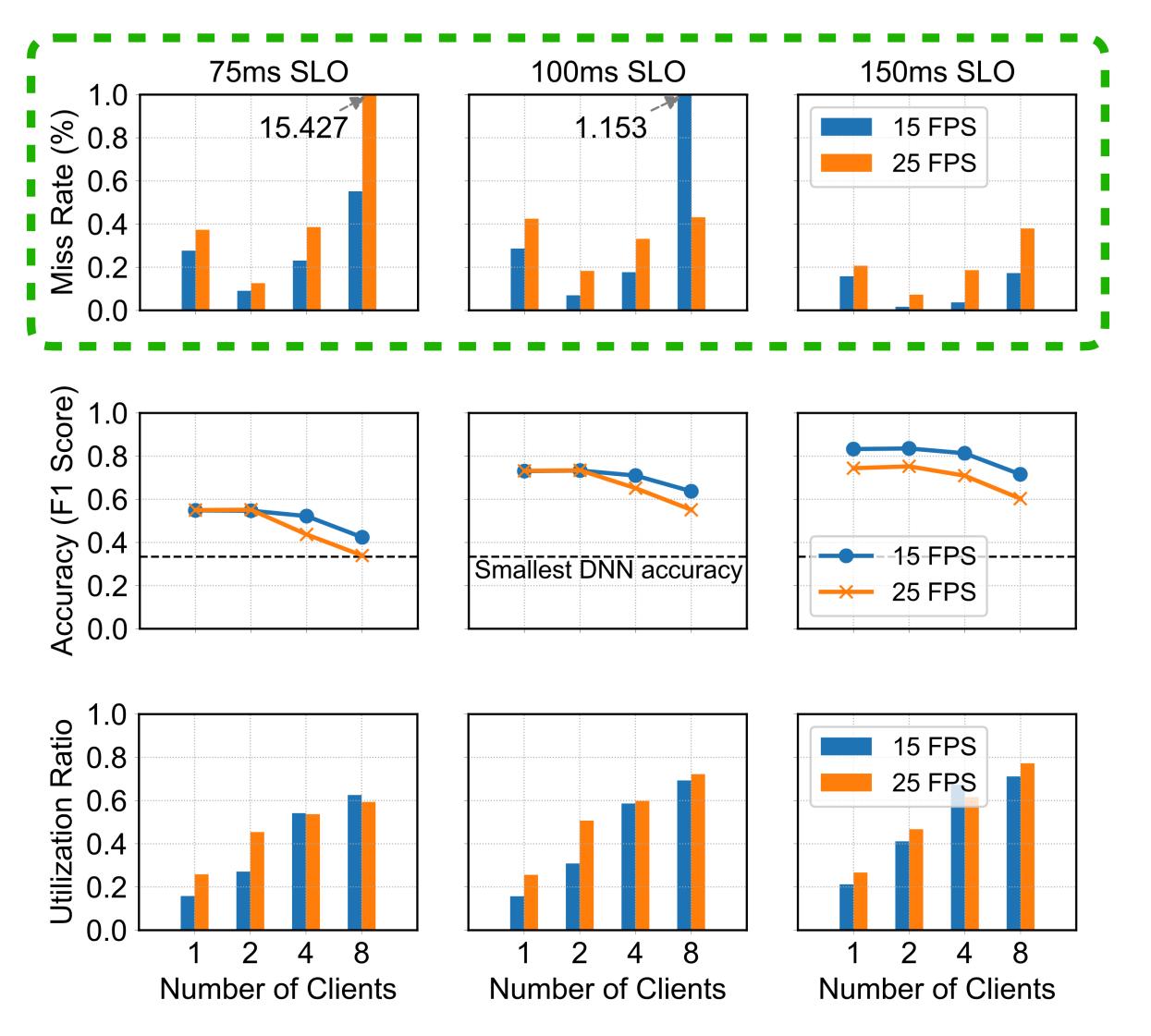
Experimental setup

Jellyfish is evaluated on a popular video analytics task and real-world network traces





End-to-end performance on synthetic network trace



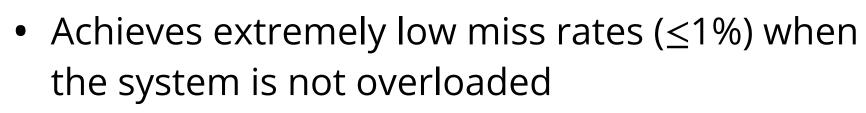
• Achieves extremely low miss rates (\leq 1%) when the system is not overloaded

• Maintains high accuracy by selecting bigger DNNs whenever possible

• Maintains high worker utilization (up to 75%) when the system becomes more saturated

End-to-end performance on synthetic network trace

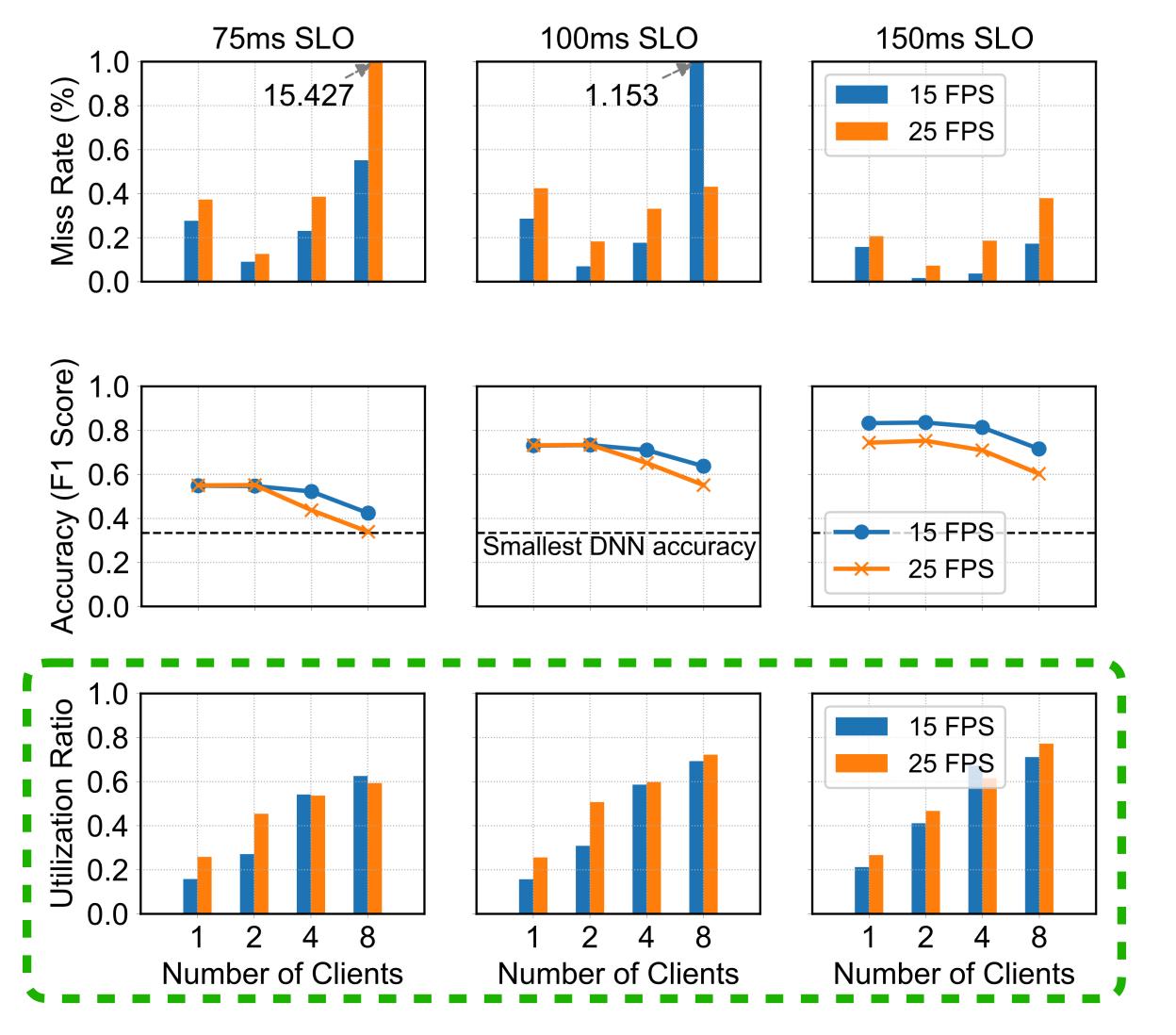




• Maintains high accuracy by selecting bigger DNNs whenever possible

• Maintains high worker utilization (up to 75%) when the system becomes more saturated

End-to-end performance on synthetic network trace



 Achieves extremely low miss rates (≤1%) when the system is not overloaded

• Maintains high accuracy by selecting bigger DNNs whenever possible

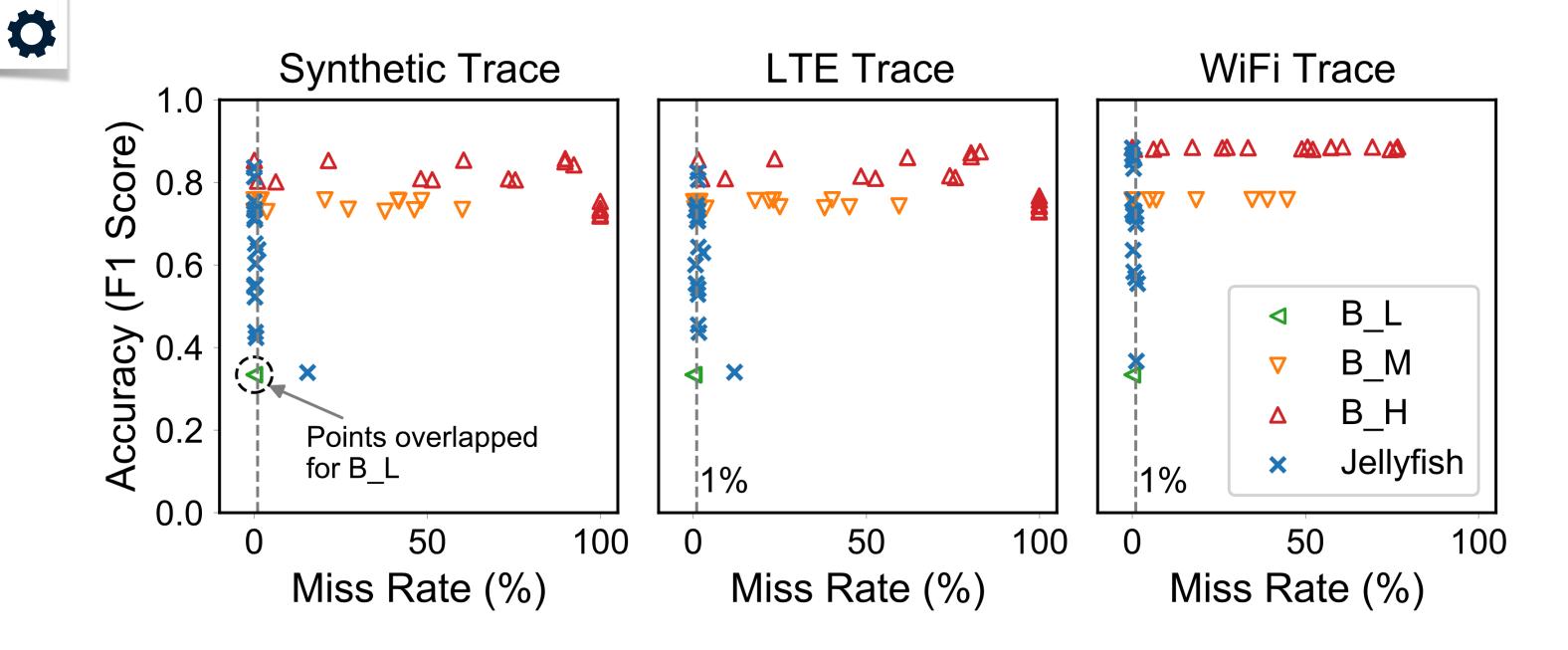
• Maintains high worker utilization (up to 75%) when the system becomes more saturated

Server:

- Scheduler: EDF-like [Clockwork, OSDI'20]
- **Three baseline variants:** lowest DNN (B_L), middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware [AWStream, SIGCOMM'18]

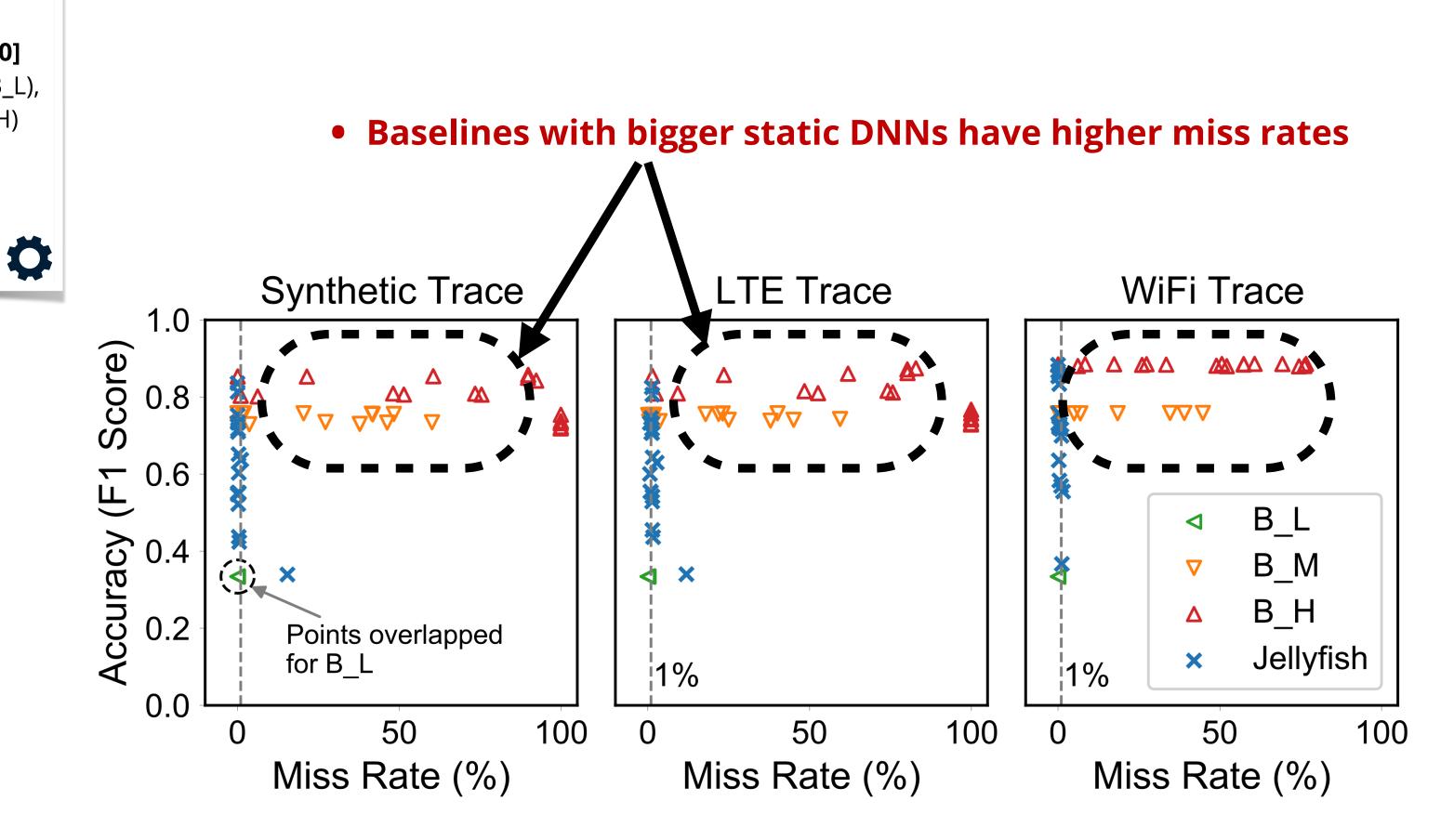


Server:

- Scheduler: EDF-like [Clockwork, OSDI'20]
- **Three baseline variants:** lowest DNN (B_L), middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware [AWStream, SIGCOMM'18]

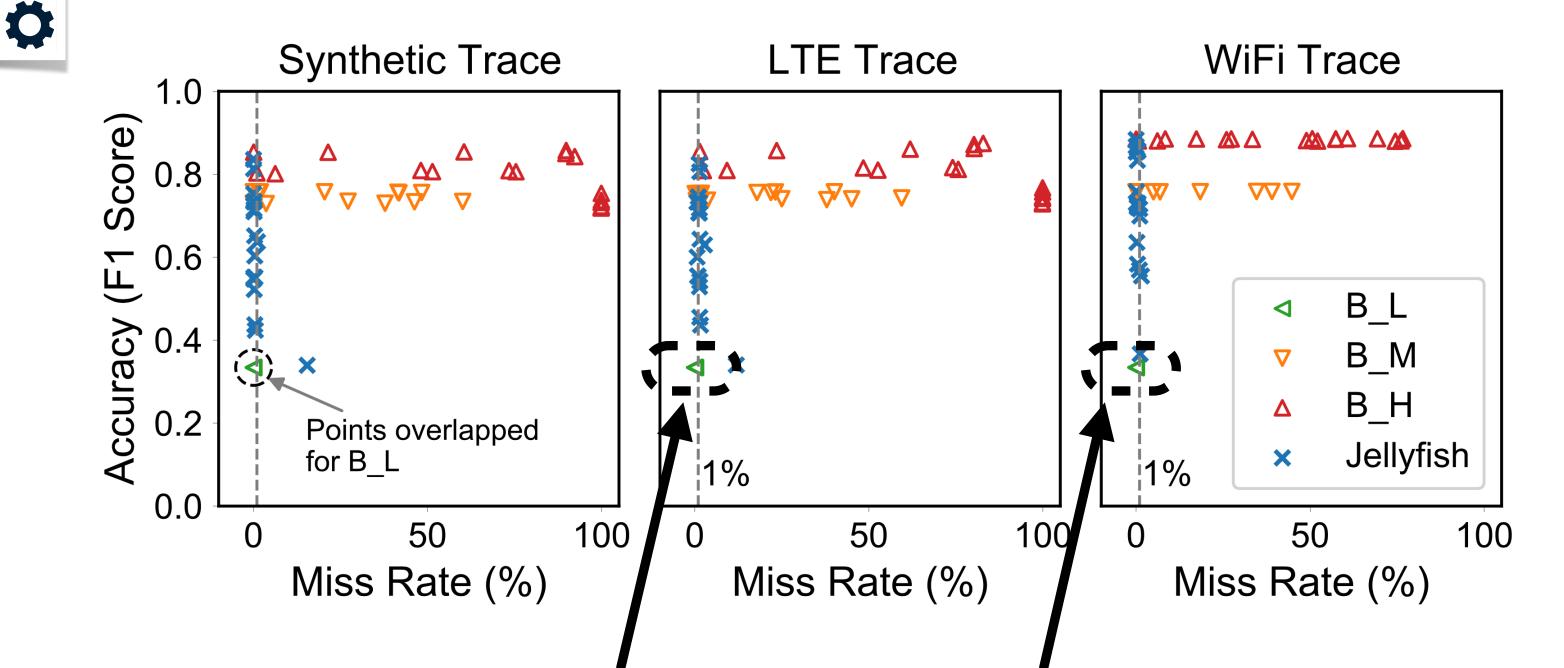


Server:

- Scheduler: EDF-like [Clockwork, OSDI'20]
- **Three baseline variants:** lowest DNN (B_L), middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware [AWStream, SIGCOMM'18]



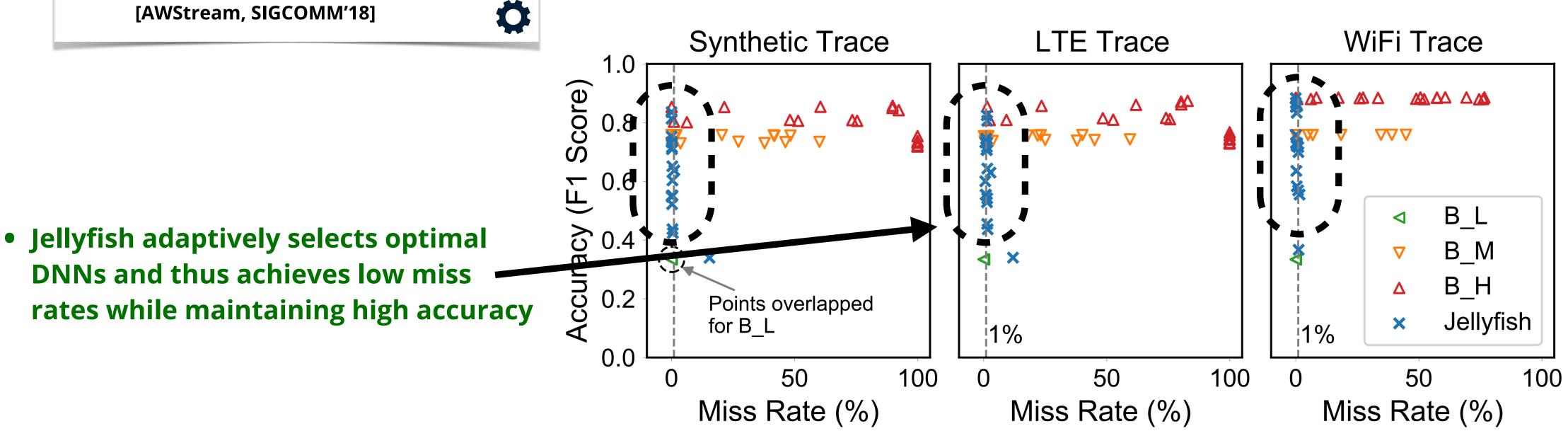
• Baselines with bigger static DNNs have higher miss rates

• Baselines with smaller static DNNs have lower miss rates but also lower accuracy

- Scheduler: EDF-like [Clockwork, OSDI'20]
- **Three baseline variants:** lowest DNN (B_L), middle DNN (B_M), and biggest DNN (B_H)

Client:

• Data adaptation: Bandwidth-aware [AWStream, SIGCOMM'18]

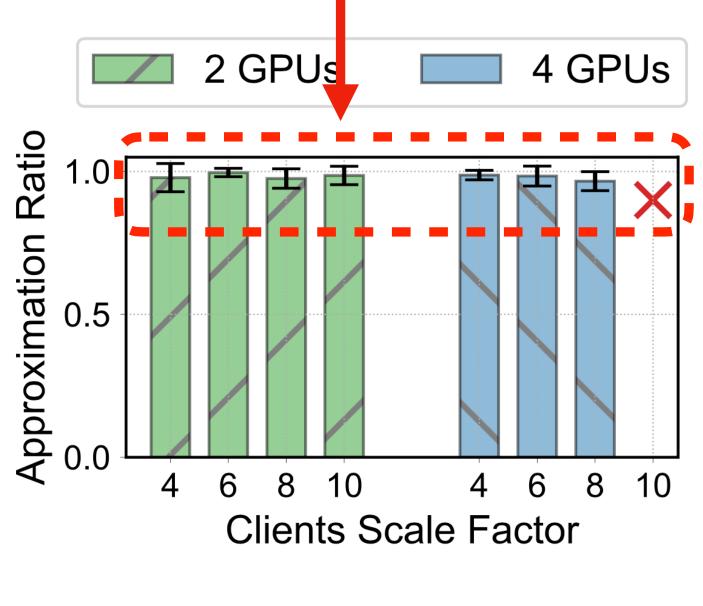


• Baselines with bigger static DNNs have higher miss rates

• Baselines with smaller static DNNs have lower miss rates but also lower accuracy

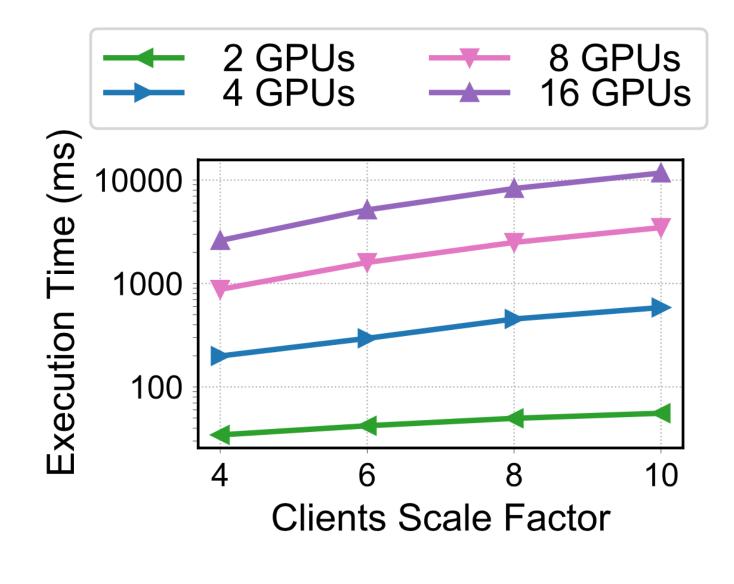
Jellyfish scheduler is near-optimal and runs in real-time

• The approximation ratio compared to MILP ranges from 0.966 to 0.996



(a) Approximation ratio (mean)

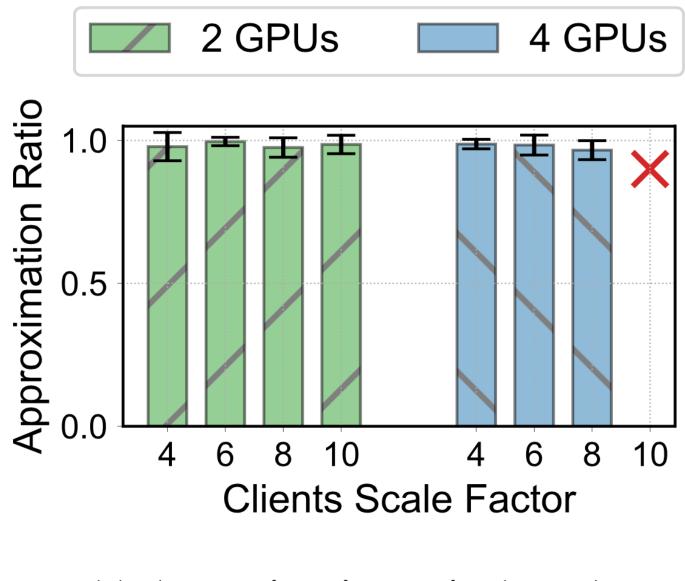
• For up to 8 GPUs and 32 clients, the scheduler has running times less than seconds



(b) Execution time in log scale

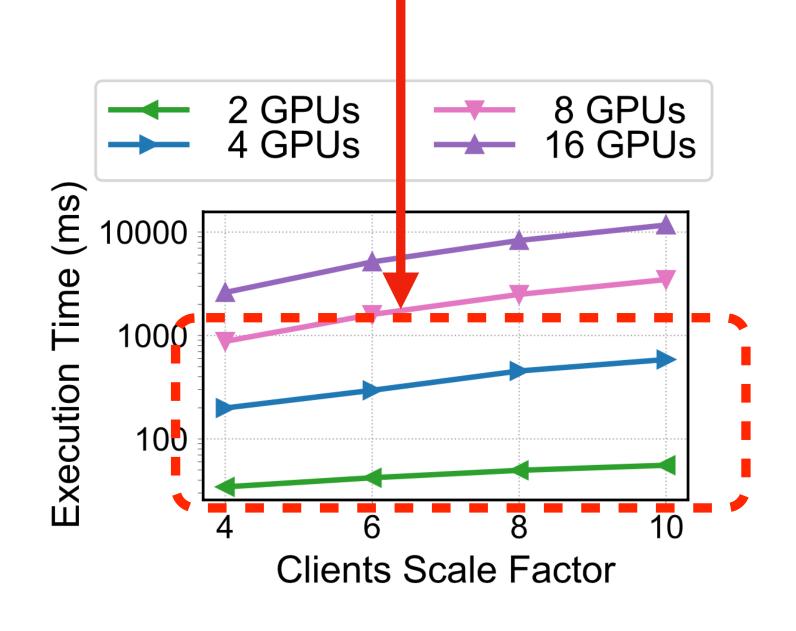
Jellyfish scheduler is near-optimal and runs in real-time

• The approximation ratio compared to MILP ranges from 0.966 to 0.996



(a) Approximation ratio (mean)

• For up to 8 GPUs and 32 clients, the scheduler has running times less than seconds



(b) Execution time in log scale

Discussion and future work

• **Request rate adaptation** is not incorporated in the current version

• Compute budget estimation depends on the accurate estimation of compressed data size, which is difficult due to the changing data content

• The system must be tuned for stable performance (i.e., for **predictability**)

Summary

- **Timely inference serving** over dynamic edge networks is important and challenging
- We propose **Jellyfish** which...
 - aims to fulfill end-to-end latency SLOs specified over the variable network time and DNN inference time
 - employs data and DNN adaptation jointly and coordinates adaptation decisions for multiple clients
 - achieves extremely low latency SLO violations while maintaining high accuracy

Contact: Vinod Nigade

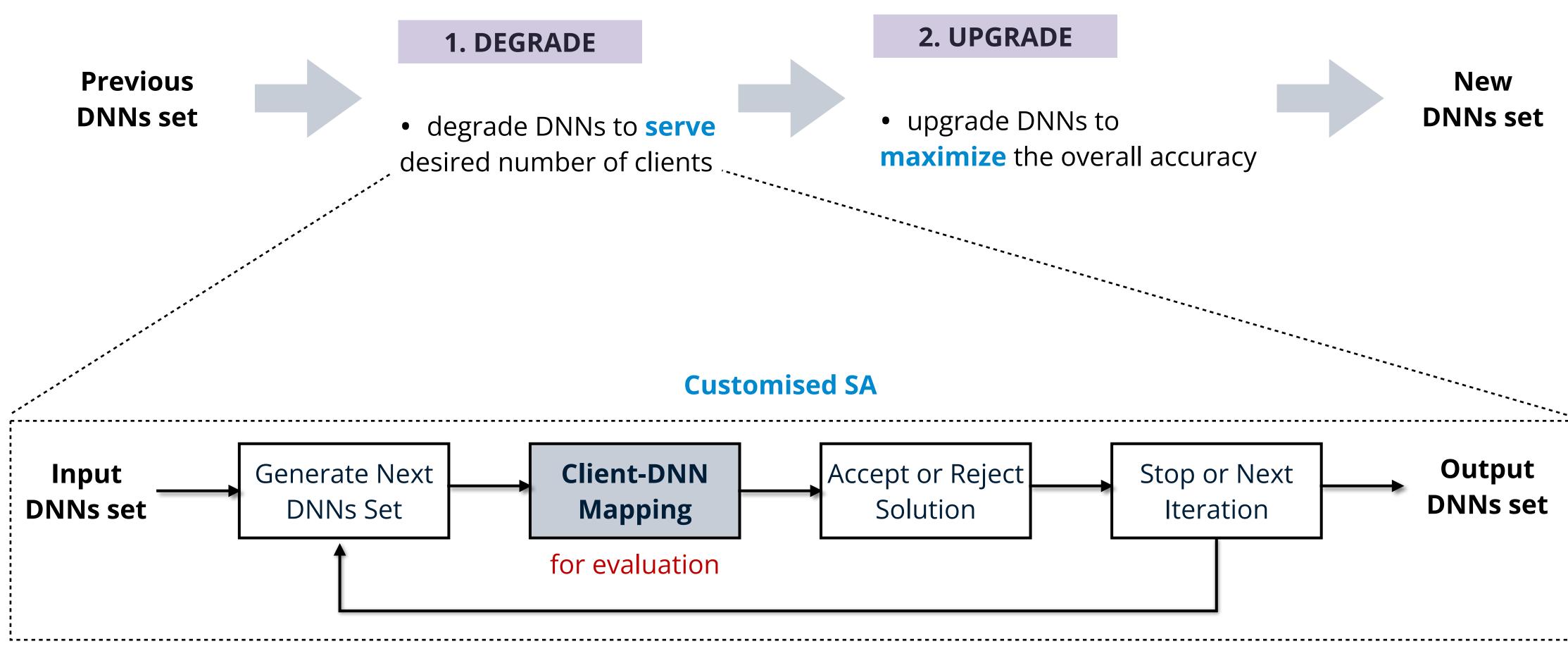
Email id: v.v.nigade@vu.nl

Source code: https://github.com/vuhpdc/jellyfish

Extra slides

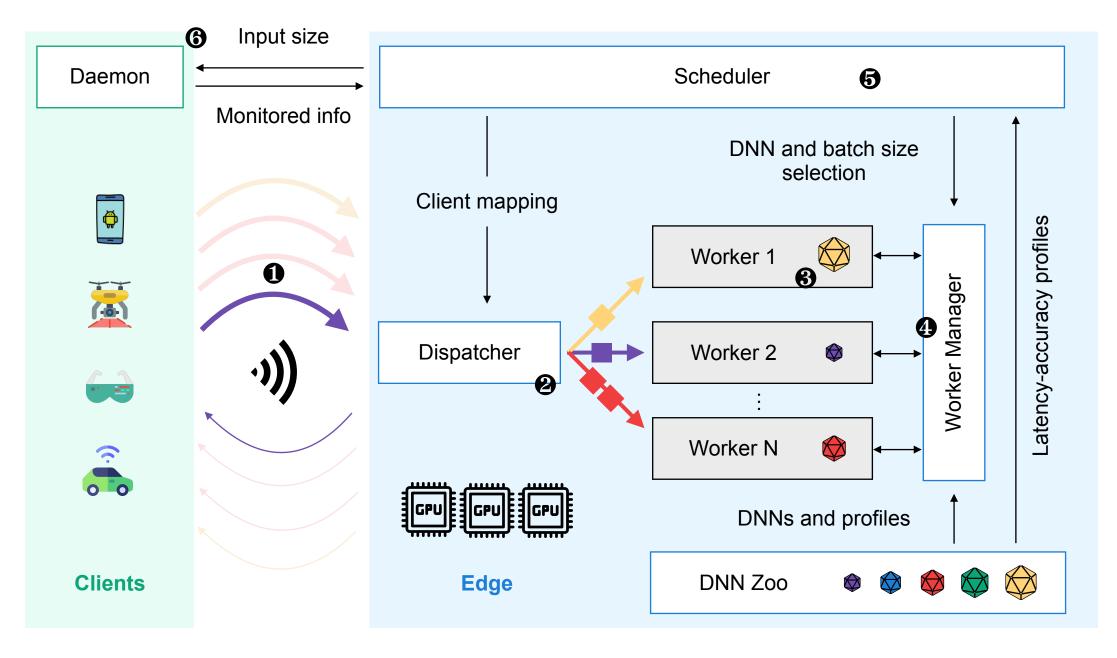
DNN selection

Unlike conventional SA, Jellyfish has **two sequential modes** of operation



More details in the paper

- DNN pre-fetching technique to minimize DNNs switching cost
- Client's bandwidth estimation
- System design



Jellyfish

Comparison to independently running data and DNN adaptation

Data adaptation

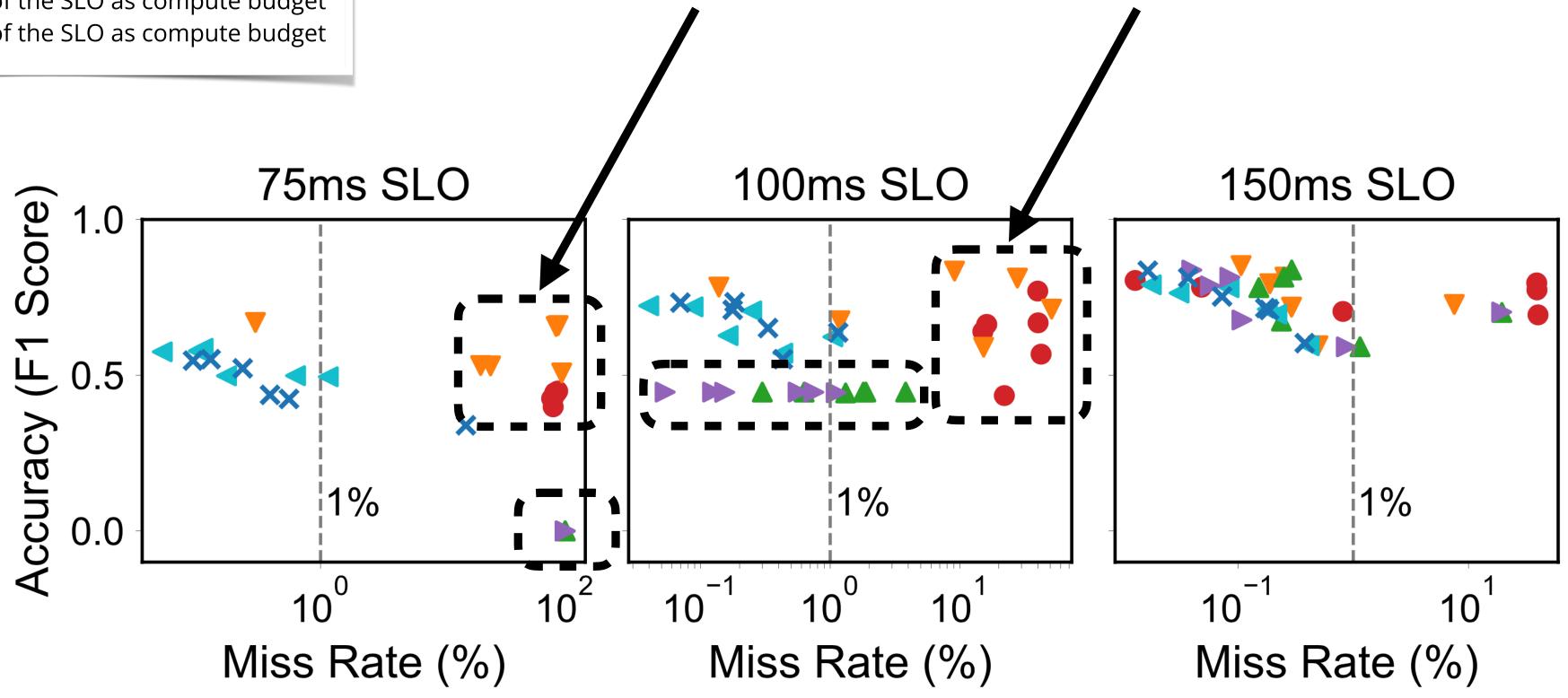
- **DA**off: disabled
- **DA**_{bw}: bandwidth-aware
- **DA**_{slo}: bandwidth and slo-aware

DNN adaptation:

• **CB**_{50%}: 50% of the SLO as compute budget

Ö

• **CB_{75%}:** 75% of the SLO as compute budget



 Without proper coordination and alignment between data and **DNN adaptation, we see high miss rates or low accuracy**

Performance on a large-scale setup with LTE trace

Ö

Clients Configuration

- Number of clients: {8, 16, 24, 32}
- **SLOs:** {100, 150} milliseconds (ms)
- **FPS:** 15
- AWS instance: t3.2xlarge

Server Configuration

- **GPUs:** 8 distributed NVIDIA T4
- Worker AWS instance: g4dn.2xlarge
- **Dispatcher & scheduler AWS instance:** c5.9xlarge

