
Jellyfish: Timely Inference Serving for Dynamic
Edge Networks

Vinod Nigade, Pablo Bauszat, Henri Bal, Lin Wang
Vrije Universiteit Amsterdam

Abstract—While high accuracy is of paramount importance for
deep learning (DL) inference, serving inference requests on time
is equally critical but has not been carefully studied especially
when the request has to be served over a dynamic wireless
network at the edge. In this paper, we propose Jellyfish—a novel
edge DL inference serving system that achieves soft guarantees
on end-to-end inference latency often specified as a service-level
objective (SLO). To handle the network variability, Jellyfish
exploits both data and deep neural network (DNN) adaptation
to conduct tradeoffs between accuracy and latency. Jellyfish
features a new design that enables collective adaptation policies
where the decisions for data and DNN adaptations are aligned
and coordinated among multiple users with varying network
conditions. We propose efficient algorithms to dynamically adapt
DNNs and map users, so that we fulfill latency SLOs while
maximizing the overall inference accuracy. Our experiments
based on a prototype implementation and real-world WiFi and
LTE network traces show that Jellyfish can meet latency SLOs
at around the 99th percentile while maintaining high accuracy.

I. INTRODUCTION

In the past decade, modern applications such as augmented
reality, intelligent personal assistants, and autonomous driv-
ing [1]–[4] have proliferated. A considerable number of
these applications are based on deep learning (DL) inference,
e.g., analyzing continuous video streams to understand the
environment with pre-trained deep neural networks (DNNs) [5].
Employing sophisticated learning techniques [6], [7], these
DNNs typically demand intensive computations, making them
hard to deploy on mobile and IoT devices due to the limited
capability of these devices. Therefore, DL inference for mobile
and IoT applications is often offloaded to a more powerful
nearby computing platform such as edge servers equipped with
high-end accelerators like GPUs or TPUs [8].

Handling DL inference requests is generally referred to as
inference serving, where requests are scheduled to computing
resources (e.g., GPUs). Then, the corresponding DNN is
loaded on the computing resources to execute the request,
taking the data associated with the request as input. DL
inference serving has been extensively studied recently with
frameworks including Clipper [9], Nexus [10], Clockwork [11],
and INFaas [12]. The general goal is to achieve resource
efficiency and/or guarantee inference latency (e.g., serving
requests within 100ms [11]), as typically specified in the
service-level objective (SLO) of modern applications.

Despite the enormous efforts, virtually all existing DL
inference serving systems focus on the server part, leaving
out the network part when specifying the SLO. However,
inference requests with input data generated by mobile or

4. DNN
adaptation

Edge
server

Network

time

Compute

time

SLO

3. Batching

2. Client-DNN
mapping

Edge DL inference serving

Inference
requests

Clients

1. Data
adaptation

Fig. 1: Collective DNN adaptation for timely edge DL inference serving.

IoT devices need to travel through a (wireless) network before
they arrive at the edge server. Such a network typically shows
high performance variability [13], [14], causing variable delays
in network transmission for inference requests. Hence, SLOs
for mobile and IoT applications should be specified end-to-end,
covering both the network and compute parts. Being agnostic
to the network time, edge DL inference serving systems risk
ending up with insufficient time to process the request (e.g.,
under poor network conditions), leading to SLO violations.
Therefore, considering network time and end-to-end SLOs
poses new challenges and calls for new designs for timely
edge DL inference serving for mobile and IoT applications.

In this paper, we propose Jellyfish—a novel framework for
timely inference serving at the edge, aiming to guarantee
the end-to-end SLO while achieving high inference accuracy.
Jellyfish relies on two adaptation strategies to achieve tradeoff
between accuracy and latency: data adaptation to adjust
the input data size and DNN adaptation to switch between
DNNs. Jellyfish features a new design that enables collective
adaptation policies. More specifically, Jellyfish aligns the data
and DNN adaptation decisions for each client and coordinates
the adaptation decisions among multiple clients by provisioning
a pool of DNNs with different latency-accuracy tradeoff profiles
to serve the requests from these clients collectively. One major
benefit of such a design is the potential of leveraging request
batching—a known technique for improving resource efficiency
in DL inference serving [9], [10]. The higher resource efficiency
in Jellyfish translates into more room for inference accuracy
improvements under latency constraints, but at the cost of more
complex scheduling decision-making that involves multiple
steps, as depicted in Fig. 1.

Jellyfish addresses the scheduling challenges with a set
of efficient algorithms. Particularly, given a collective DNN

adaptation decision (i.e., a selected set of DNN instances),
Jellyfish first solves the client-DNN mapping problem by
applying dynamic programming. The client-DNN mapping
algorithm also leverages batching to the maximum and outputs
the corresponding request batching decision for each DNN
instance. Upon system status changes, Jellyfish employs a
separate procedure to adapt (select) DNNs incrementally based
on simulated annealing [15]. In addition, Jellyfish adopts a
greedy DNN instance prefetching strategy to reduce DNN
adaptation overhead on the server. Finally, Jellyfish keeps
informing each client about the input size of the DNN to which
they are mapped, so that the client performs data adaptation
by sending inference requests with that particular data size.

In developing Jellyfish, we make the following contributions:
1) We present Jellyfish, a new DL inference serving system

for dynamic edge networks based on the idea of collective
DNN adaptation, aiming to achieve soft SLO guarantees.

2) We formulate the collective DNN adaptation problem
considering the latency constraints, and propose efficient
algorithms for dynamic client-DNN mapping, request batch-
ing, and DNN selection.

3) We design and implement a prototype for Jellyfish and
demonstrate its effectiveness by conducting extensive ex-
periments for popular video analytics inference tasks with
real-world network traces. Our results show that Jellyfish
can meet the SLO of inference requests around 99% of the
time while maintaining high accuracy.

II. BACKGROUND AND MOTIVATION

A. DL Inference Serving

Today, DL-based mobile and IoT applications like augmented
reality and intelligent personal assistants rely on deep neural
networks (DNNs) to complete inference tasks like object
detection and speech recognition [1], [3], [4]. A DNN consists
of multiple layers. To achieve high accuracy, DNNs employ an
increasing number of layers [6], [16], leading to unprecedented
computing demands for DNN execution. However, mobile and
IoT devices are typically resource-constrained, incapable of
completing DL-based inference on time with state-of-the-art
DNNs. Furthermore, battery life is usually a big concern for
these devices. Hence, DL inference tasks are often offloaded
to more powerful computing platforms such as edge servers
equipped with high-end GPUs and TPUs [1], [3].

DL inference serving on servers has been extensively studied
recently [9]–[12]. Applications based on DL inference typically
require some form of latency guarantee, often specified as a
service-level objective (SLO), to ensure the usefulness of the
inference result. For example, digital assistance like Amazon
Alexa dictates that the tail latency is constrained within 200–
300ms [17]. Current inference serving frameworks like Nexus
and Clockwork focus mainly on meeting SLOs via inference
request scheduling, leveraging the high predictability of DNN
execution time. However, most of these frameworks assume
that a fixed SLO is specified for the DNN execution part and
optimize only the inference serving time towards this SLO.

0

500

1000
Without data (image) adaptation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Frame Index

0

500

1000
With data (image) adaptation

2000 Frames
0

25
50
75

N
et

w
or

k
Ti

m
e

(m
s)

Fig. 2: Network time for sending JPEG images with adaptive resolutions over
an LTE network (bandwidth shown in Fig. 10).

We argue that this is insufficient for inference serving at
the edge for mobile and IoT applications. Typically, inference
requests with input data (e.g., an image) issued by mobile or
IoT devices travel through a dynamic (wireless) network (e.g.,
WiFi or cellular) before they reach the edge server. As a result,
the time left for computing (i.e., inference serving) on the
server can experience significant variations due to the variable
network time caused by the variable network performance
(see Fig. 2). Consequently, the application SLO should be
defined end-to-end, including both the network and compute
time. Ideally, edge DL inference serving for mobile and IoT
applications should consider jointly the network and compute
parts in the pipeline and be adaptive to network dynamics.

B. Adaptation Techniques for Inference Serving Systems

DNN adaptation. The idea of DNN adaptation is to choose
between functionally-equivalent DNNs with different latency-
accuracy tradeoff profiles. Generally, this can be achieved by
two approaches: (1) DNN switching relies on a set of DNNs
optimized with different depths, widths, or numerical precision
offline [18], [19]. The idea has been applied in several DL
inference serving systems, such as ALERT [20], where the
DNN is switched continuously at runtime to meet latency,
accuracy, and energy constraints. (2) Dynamic DNNs enable
the partial execution of the DNN (e.g., a sub-network or early-
exit) at runtime depending on the changing input data content
or resource availability [21], [22]. Overall, DNN adaptation
techniques are agnostic to the variable network time, making
them, when applied alone, ineffective for end-to-end latency
SLO guarantees over a dynamic edge network.

Data adaptation. When the input data for the DNN has to be
transferred over a dynamic network [23], [24], data adaptation
(e.g., changing the image resolution) can be used to reduce the
input data size to avoid network bottlenecks (w.r.t. throughput),
at the cost of reduced inference accuracy. To illustrate the
power of data adaptation, we perform an experiment where
we stream JPEG images over a dynamic LTE network and
adapt the image resolution to ensure a stable throughput. Fig. 2
shows that data adaptation can help to smooth out the big
spikes in the network time for each image, but still, significant
variability can be observed. This shows that data adaptation,
while beneficial, is not enough on its own to deal with tight
end-to-end latency SLO requirements.

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

Resolution Gap (#pixels for each dimension)

5
7
9

11
13
15
17
19
21
23

Ba
nd

w
id

th
 (M

bp
s)

50

100

150

Ex
tra

 N
et

w
or

k
Ti

m
e

(m
s)

Fig. 3: The extra network time spent when a client sends JPEG images at a
resolution larger than the input size of the DNN on the server under varying
bandwidth conditions (covering the bandwidth range of a real-world LTE
network). The resolution gap is defined as the chosen client-sending resolution
minus the resolution expected by the DNN on the server.

C. Limitations of Existing Approaches

We identify the following two major limitations of existing
approaches when used for inference serving with end-to-end
latency SLOs under highly dynamic edge networks.

Misaligned adaptation decisions. Existing works mostly
focus on either data or DNN adaptation [20], [21], [23],
[24]. When simply combined, they could produce misaligned
adaptation decisions, leading to suboptimal performance. For
example, when the network condition is good, input data
adaptation may choose a high resolution for the image data
that is sent over the network. However, if the DNN running
on the server expects a much lower resolution for its input due
to a low compute time budget, the received image has to be
downscaled before being served. This leads to resource waste
in terms of both network time and bandwidth. To quantify
this effect, Fig. 3 shows the extra network transmission time
due to misaligned adaptation decisions, where up to 150ms
of extra time is unnecessarily consumed simply for network
transmission when the chosen input data size is larger than the
input size of the chosen DNN. Conversely, if the chosen data
size is smaller than the input size of the chosen DNN, the data
has to be upscaled when reaching the server, which potentially
affects the DNN accuracy adversely [25]. To ensure the end-to-
end latency SLO, the decisions for the two adaptation strategies
need to be aligned.

Uncoordinated adaptations for multiple clients. Many
existing works on adaptive inference focus on a single-client
setup where the adaptation is applied to a single inference
pipeline [23], [24], [26], [27]. Although such a setup could
be simply replicated across multiple clients, we argue that
such a design would lead to poor resource efficiency, which is
detrimental to the resource-limited edge environment. Without
coordination among the adaptation for different clients, the
server would need to instantiate a large number of DNN
instances, each for a client and possibly in a different size.
Further, batching of inference requests from multiple clients
would be prohibited, leading to poor resource efficiency
especially when the inference request rate for each client is
low. To avoid these issues, the adaptations for multiple clients
need to be coordinated holistically.

None of the existing works are able to overcome these
limitations simultaneously [27], [28]. We argue that a collective
adaptation approach that holistically aligns and coordinates
DNN and data adaptation decisions for multiple clients is
required to address the aforementioned challenges.

Dispatcher

Clients

W
or

ke
r M

an
ag

er

Worker 1

Worker 2

Worker N

Scheduler

DNN Zoo

Daemon

La
te

nc
y-

ac
cu

ra
cy

 p
ro

fil
es

…

DNN and batch
size selection

Client mapping

Input size

Edge

Monitored info

❶

❷

❸
❹

❺

DNNs and profiles

❻

Fig. 4: An overview of the Jellyfish system architecture.

III. JELLYFISH DESIGN

Jellyfish’s primary goal is to serve all the inference requests
from multiple clients over the network and meet the request
deadlines as defined by their SLOs. In this section, we discuss
the architecture, general workflow, and main components of
Jellyfish, which work in tandem to achieve the goal.

A. Overview

An overview of the Jellyfish system architecture is shown in
Fig. 4. Jellyfish supports multiple clients simultaneously, and
its major components are located on the edge side. When the
clients 1 send the requests to the edge over the network, the
dispatcher component takes the client-DNN mapping from the
scheduler and 2 distributes the requests to workers running
the expected DNN. Each worker is a separate process (on one
or more edge servers) holding some GPU resources to 3 serve
inference requests with the batch size selected by the scheduler.
The worker manager 4 deploys DNNs (stored in the DNN zoo)
to the workers following the DNN selection decision by the
scheduler. The scheduler provides the intelligence of Jellyfish,
where it takes the latency-accuracy profiles from the DNN
zoo and the monitored information from the client daemon as
input, and 5 runs our scheduling algorithms periodically to
decide the client-DNN mapping, DNN selection (adaptation),
and batch size for each worker. The scheduler then 6 informs
all the clients about the input size of their mapped DNNs to
start sending new requests at that particular input size (i.e.,
data adaptation aligned with DNN adaptation).

While Jellyfish is an edge-centric inference serving system,
it requires some basic support (as daemons) from clients: (1)
a metadata exchange mechanism (piggy-backed on the normal
inference requests/responses) for sharing client side monitored
information including the inference request rate and estimated
network bandwidth, and the input size dictated by the client-
DNN mapping from the scheduler, (2) a request pre-processing
mechanism that adjusts the data to match the DNN input size
or to the maximum possible size when matching exactly the
DNN input size is impossible due to poor network conditions.

The end-to-end latency consists of two parts: network time
(request and response) and compute time on the edge (for
request dispatching and handling, request preprocessing if any,
queuing, and DNN execution).

B. System Components

Dispatcher. The dispatcher distributes inference requests
from clients to their respective workers. It first fetches the
client-DNN mapping from the scheduler and then redirects
the requests to the workers running the corresponding DNNs.
The dispatcher also handles all the connections to clients and
includes service endpoints to interact with the clients, e.g., to
(de)register clients in the system.

Worker. Each worker is statically allocated on one GPU
and maintains a local queue to buffer incoming requests. The
worker process batches requests (resizing them if needed) in
the queue and sends the request batches to the DNN deployed
on the GPU for execution. The worker also implements a
lazy dropping policy at the queue where requests that are too
late to be processed by the current DNN will be dropped
directly without further processing (similar to [10], [11]). We
exclusively employ GPUs for the DNN inference task analogous
to other serving systems [10], [11]. Our system and algorithms
equally apply to CPUs or other accelerators, provided that the
predictability and stability of inference latencies hold.

Worker manager. The worker manager is responsible for
deploying and adapting DNNs on the workers. Supplied with
the DNN selection decision made by the scheduler, the worker
manager fetches the DNN from the DNN zoo and loads the
DNN (moving from the host memory to the GPU memory) on
the GPU of the worker. The worker manager also instructs the
worker about the batch size to use with the deployed DNN.
Upon receiving new decisions from the scheduler, the worker
manager swaps out the current DNNs and loads the new DNNs.
However, swapping DNNs on the GPU can be time-consuming
and cause delays in DNN updates. To alleviate this issue, we
preload a set of DNNs that are neighboring (in input size) the
currently selected DNN (see §IV-D).

Scheduler. The scheduler provides the intelligence of the
system by making the adaptation decisions. The goal of the
scheduler is to maximize the overall accuracy while meeting
the latency SLOs for all clients. The scheduler continuously
collects and maintains the following information: client state
(i.e., request rate, SLO, and bandwidth estimation), edge state
(currently deployed DNNs and client-DNN mapping), and DNN
profiles from the DNN zoo. The scheduler then feeds such
information to a set of scheduling algorithms periodically (or
upon system state changes) to (re)generate decisions for DNN
selection, batch size, and client-DNN mapping. We layout the
detail of the scheduling algorithms in §IV.

DNN zoo. The DNN zoo keeps a set of DNNs with different
input sizes for the same DL inference task, enabling latency-
accuracy tradeoffs in DNN adaptation. To generate these DNNs
with varying architectures and input sizes, there exist several
techniques, such as bag of models [29], early-exit [30], and
neural architecture search [31]. We leverage the bag of models1

technique to select a list of pre-trained DNNs. We sort DNNs
in increasing order of their input sizes. After sorting, we expect

1A collection of functionally-equivalent DNNs with varying architectures
and latency-accuracy tradeoff profiles.

the accuracies of these DNNs to follow an increasing order;
otherwise, we simply remove the DNNs with lower accuracy
but a larger input size. We profile (and store) the latency and
accuracy of these DNNs for different batch sizes.

Client daemon. The client runs a daemon process to collect
local metadata (e.g., request rate, bandwidth estimation, and
SLO) to share with the scheduler on the edge. Upon the transfer
of each inference request, the client daemon estimates the
network bandwidth for that request. To this end, we can employ
the online network bandwidth estimation techniques used in
recent works [24], [26], [30], [32].

IV. SCHEDULING ALGORITHMS

In this section, we provide the formulation of the scheduling
problem and present our algorithm design.

A. Problem Formulation

Suppose the DNN zoo holds a set of diverse DNNs denoted
by M = {m1,m2, ...,mM}. Each DNN mj ∈M is associated
with profiles including inference latency lj(b), throughput
tj(b) = b/lj(b), and expected accuracy aj , where b ∈ [1...B] is
the batch size bounded by a given integer B. We enumerate the
DNNs in set M in the increasing order of the inference latency.
Similar to other works [20], [24], [33], we assume that a
smaller DNN (i.e., with smaller input size) has lower inference
latency, but also lower expected accuracy. The accuracy of
DNNs can be modeled as a non-decreasing function of the
DNN size [34]. The inference latency can be modeled as
an increasing function of the DNN size and the batch size.
When the batch size increases, the inference latency grows
sub-linearly, leading to increased throughput with diminishing
returns at larger batch sizes [35].

The set of workers performing DL inference is represented
by G = {g1, g2, ..., gK}. We assume each worker exclusively
occupies one GPU to run the DNN to serve inference requests.
More fine-grained GPU sharing mechanisms such as NVIDIA
multi-process service (MPS) or multi-instance GPU (MIG)
can also be employed [36], where each instance is treated
as a separate worker. The DNN execution time is highly
predictable [11], so we use DNN latency profiles obtained
offline for online latency prediction.

Suppose the system is serving a set of clients given by
C = {c1, c2, ..., cN}. Each of the clients ci generates inference
requests with input size si at rate λi. Both the set of clients and
the request rate can be time-varying; for the ease of expression,
we omit the time index in the notation. Each client will be
mapped to a worker on the edge side and inference requests
from this client are sent to that particular worker. The client
also specifies the SLO, i.e., the end-to-end inference latency,
as Oi. The network bandwidth at client ci is denoted by Wi,
which is estimated by the client daemon as discussed in §III-B.

The scheduling problem of Jellyfish aims to find the optimal
multiset of DNNs to be deployed on the workers, the client-
DNN mapping, and the batch size for each worker, so as to
maximize the expected accuracy of all served inference requests.
We introduce a binary decision variable xijk ∈ {0, 1} to denote

if a client ci is mapped to DNN mj deployed on worker gk and
an integer decision variable bk ∈ [1...B] to denote the batch
size for the selected DNN on worker gk. We also introduce an
auxiliary decision variable zkj ∈ {0, 1} denoting the selection
of DNN mj on worker gk. The scheduling problem can be
formulated with the following integer program:

(P1) max
{x,b}

∑
i,j,k aj · λi · xijk (1)

s.t.
∑

j,k xijk = 1, ∀i (2)∑
j zkj ≤ 1,∀k (3)

zkj ≥ xijk,∀i, j, k (4)∑
j,k xijk · 2lj(bk) ≤

∑
j,k xijk · Lij , ∀i (5)∑

i,j xijk · λi ≤
∑

j zkj · tj(bk), ∀k (6)

vars xijk, zkj ∈ {0, 1}, bk ∈ [1...B]

The aim is to maximize the overall accuracy by serving
requests with more accurate DNNs, given all requests are
served within their SLOs. Thus, Eq. (1) defines the overall
accuracy metric as the objective to maximize. Each client is
mapped to only one DNN and one worker as specified in
Eq. (2). Eq. (3) captures that at most one DNN is selected for
each worker. Eq. (4) guarantees that all clients are mapped to
the same and correct DNN when they are mapped to the same
worker. Eq. (5) enforces the latency constraint specified with
respect to the edge-side latency (compute) budget Lij when
mapping client ci to DNN mj . The latency budget can be
calculated as Oi − si/Wi (i.e., subtracting network time from
SLO). We cap the queueing delay for an inference request on
the edge side at the DNN execution time lj(bk) (representing
the worst case), which is also used in [10]. Thus, the latency
(compute) budget should be at least twice the DNN execution
time. Eq. (6) guarantees that the DNN mj on worker gk has
adequate throughput capacity to support the aggregate request
rate of all the mapped clients.

The above problem is hard to solve and existing solvers for
mixed-integer linear program (MILP) cannot handle it in rea-
sonable time (e.g., within a second). Our MILP implementation
of the problem in CPLEX takes around 20s to 15min time with
4 threads for finding the optimal solution for a representative
setup of 4 workers, 16 clients, and 16 DNNs with a maximum
batch size of 12. To handle the complexity, we propose to
tackle the problem by splitting it into two sub-problems: (1)
client-DNN mapping and (2) DNN selection. We optimize
each sub-problem iteratively to improve the overall accuracy
objective without violating the latency SLO constraint.

B. Client-DNN Mapping

We first discuss the client-DNN mapping problem, which
later serves as a building block for the DNN selection problem.
The goal is to map the set of clients to a given set of
DNN instances, optimizing the overall accuracy as defined
in Eq. (1). Our client-DNN mapping algorithm is based on the
key observation that the overall accuracy is maximized when
the larger DNNs (more accurate ones) are assigned with higher
aggregate request rates. We adopt a greedy approach where we
first find clients and map them to the largest DNN to ensure

Algorithm 1: Client-DNN Mapping

Function MapClients(clients, dnn models):
1: sort dnn models in descending order of their accuracies
2: map ← { }
3: for model in dnn models do

// break if clients is empty

4: clients′ ← FindOptimalClients(model, clients)
5: batch size ← model.checkAndAssign (clients′)
6: map.append (〈 model, clients′, batch size 〉)
7: clients ← clients − clients′

8: return map

Function FindOptimalClients(model = 〈lj , tj〉, clients):
9: sort clients in descending order of latency (compute) budget for model

10: dp mat ← NULL
11: best cell ← (0, 0), best value ← 0
12: h ← GCD of all possible client rates
13: for 〈Lij , λi〉 in clients do
14: Bi ← argmaxb (2lj(b) ≤ Lij)

// break if Bi = 0 as further clients are not satisfied
15: Ki ← floor(tj(Bi)/h)
16: if dp mat = NULL then
17: Alloc int array of size (|clients|+ 1, Ki + 1) with zeros
18: for k = 1 to Ki do
19: dp mat[i, k]← dp mat[i− 1, k]
20: wk ← k · h
21: if λi ≤ wk then
22: k′ ← (wk − λi)/h
23: v ← λi + dp mat[i− 1, k′]
24: if v > dp mat[i− 1, k] then
25: dp mat[i, k]← v
26: if v > best value then
27: best cell ← (i, k) , best value ← v

// Perform standard backtracing from (row, col) ← best cell
adding row into clients′ list

28: return clients′

the maximum possible aggregate request rate. Then, we repeat
the same for the remaining clients and DNNs in descending
order of DNN size (i.e., accuracy). The above process is listed
in the MapClients function in Algorithm 1.

Now, the problem becomes how to find a subset of clients
with the maximum possible request rate for a given DNN while
meeting the SLOs of all these clients that may have diverse
request rates and latency budgets. The key for solving this
problem is to decide what batch size to use for the DNN as
it dictates the maximum inference throughput. Using small
batch sizes reduces the throughput, thus limiting the aggregate
request rate; if we opt for large batch sizes to ensure enough
throughput, the inference latency increases, thus challenging
the SLOs of the assigned clients as specified in Eq. (5).

We observe that, given a fixed batch size, the client-DNN
mapping problem reduces to a standard 0-1 knapsack problem,
where we treat clients as items, the request rates of clients as
weights and values, and the maximum throughput of the DNN
for the given batch size as the knapsack capacity. The problem
can be solved by existing algorithms, but we still need to iterate
over all possible batch sizes, which is time-consuming.

Dynamic programming. We propose an efficient solution
based on dynamic programming (DP) to find the optimal client-
DNN mapping for a given DNN across all possible batch sizes
in one shot, as listed in function FindOptimalClients in
Algorithm 1. The idea is to enumerate all possible aggregate
request rates that can be assigned to the DNN up to a maximum
throughput value at the largest batch size possible and use them
as columns in the DP matrix, as depicted in Fig. 5. We then
recursively start computing the cell values (aggregate request

c1 c2 c3 c4 c5

bj = 2

Latency
budget

Lij

bj = 3
Batch size

λi 10 10 20 30 10Rate

tj(2) = 60tj(3) = 80
Throughput

Clients ci

0 10 20 30 40 50 60 70 80
0 0 0 0 0 0 0 0 0 0

0 10 10 10 10 10 10 10 10
0 10 20 20 20 20 20 20 20
0 10 20 30 40 40 40 40 40
0 10 20 30 40 50 60 0 0
0 10 20 30 40 50 60 0 0

Model throughput

Clients

λopt
j (3) λopt

j (2)λopt
j (3) ≤ tj(3)

λopt
j (2) ≤ tj(2)

Optimal rate assigned
at batch size 2

c1
c2
c3
c4
c5

[i, j′]

bj = 3bj = 2

Fig. 5: An illustrative example to show the DP-based algorithm.

rate) for each row representing clients in descending order of
their latency budget. For each client (row), we identify the
largest batch size for which the latency constraint is satisfied
and use it to identify the largest enumerated column in the DP
matrix (lines 13−15) up to which the cell values are computed,
and the remaining cell values are kept zero. Line 18−27 covers
the standard DP iteration for a row (client). Finally, we perform
a standard backtracing from the best cell (maximum aggregate
value) to find the optimal subset of clients.

Example. Fig. 5 illustrates a simple example of mapping
five clients to DNN mj . The DNN at batch size bj = 3
can satisfy the latency constraint of three clients, c1, c2 and
c3. Whereas at batch size bj = 2, the DNN can satisfy two
more clients, c4 and c5. At batch size bj = 3, the theoretical
throughput tj(3) of the DNN is 80 and all three clients with
aggregate request rate 40 can be assigned to this DNN mj .
Therefore, the optimal request rate assigned to the DNN at
batch size three is 40, denoted by λoptj (3). However, at batch
size bj = 2, the theoretical throughput tj(2) of the DNN is
60. Here, multiple subsets of clients are possible, e.g., one
subset is {c1, c2, c3, c5} and another is {c1, c2, c4, c5} with
aggregate request rate of 50 and 60, respectively. Therefore,
the optimal request rate assigned to the DNN at batch size
two is 60, denoted by λoptj (2). Finally, the optimal request
rate assigned to the DNN is max(λoptj (3), λoptj (2)), i.e., 60 at
batch size bj = 2 with clients {c1, c2, c4, c5}.

Optimality. For a specific DNN, the DP-based solution is
optimal. However, when mapping clients, multiple cells with
the maximum aggregate request rate may exist in the DP table.
We then choose the mapping randomly, and this might affect
the optimality of the overall solution. As shown in §VI-F, our
approach (together with DNN selection) is near-optimal.

Time complexity. In the worst case, the step size h (Line 12)
in DNN throughput enumeration is one, and therefore, the total
number of columns in the DP matrix is equal to the maximum
throughput in the DNN Zoo (tmax). The asymptotic complexity
for mapping clients to GPU workers becomes O(|G|·|C|·tmax),
where G and C are the set of workers and clients.

C. DNN Selection

Once the client-DNN mapping is in place, the next question
is how to select the optimal (multi-)set of DNNs, where the
size of the set is equal to the number of workers.

Algorithm 2: DNN Selection Based on SA
Data: Client-DNN mapping function MappingAlgo, clients list clients,

previous DNNs list previous models, initial temperature T0, min
temperature Tmin, temperature reduction ratio α

Result: near-optimal list of DNNs
1: best models ← previous models
2: best mapping ← MappingAlgo (clients, best models)
3: for mode in [DEGRADE,UPGRADE] do
4: T ← T0

5: mapping ← best mapping, dnn models ← best models
6: while not Stop(mapping,mode) and T > Tmin do
7: models′ ← NeighborsGenerator (dnn models, mode)
8: mapping′ ← MappingAlgo (clients, models′)
9: if Better(mapping′, best mapping,mode) then

10: best mapping ← mapping′, best models ← models′

11: diff ← mapping′.metric− mapping.metric
12: if diff > 0 or exp(−diff/T) > rand(0, 1) then
13: mapping ← mapping′, dnn models ← models′

14: T ← T · α
15: return best models

Finding the optimal set from the large space of size(|M|+|G|−1
|G|

)
to serve multiple clients that have varying char-

acteristics like different SLOs, request rates, and network
conditions, is nearly impractical using an exhaustive search.
There are two criteria for optimality: (O1) the fraction of
the total number of clients that can be mapped to the selected
DNN set, (O2) the average accuracy improvement as defined in
Eq. (1). To compute these metrics, we use client-DNN mapping
(Algorithm 1) as a building block for every candidate DNN
set. The exhaustive search thus becomes even more expensive.

Simulated annealing. We choose to use simulated annealing
(SA) [15], a local search technique based on random walks that
avoid being stuck in local optima when exploring the solution
state space. SA accepts weak solutions with some probability
defined by a parameter named temperature T. The acceptance
probability is high initially due to the high temperature; it
decreases with the decrease of the temperature.

Algorithm 2 depicts our iterative SA algorithm that performs
collective DNN adaptation. We start the SA process by mapping
clients (using Algorithm 1) to some previous or initial set of
DNNs. In our implementation, the initial (i.e., bootstrap) set
of DNNs contains the smallest-size DNN instances from the
DNN zoo. Unlike in conventional SA, we have two modes
of operation, namely DEGRADE and UPGRADE. We first
start the DNN’s exploration in DEGRADE mode, meaning we
reduce the DNN size to generate the next state of neighboring
DNNs. This is to first serve the minimum number of clients,
for satisfying the optimality criteria O1. If we may repeat,
the degraded DNNs have lower latency and higher throughput,
therefore, improves the possibility of serving more clients. As
soon as O1 is satisfied, we switch the state (DNNs) exploration
to UPGRADE mode. Here, the idea is to select mainly the
larger DNNs to improve the accuracy objective (i.e., optimality
criteria O2) without violating O1.

Although the SA framework has been widely used, applying
them in practice is highly problem-specific due to a non-
standard approach of selecting the algorithm parameters such
as the neighbors’ generator function, acceptance probability,
stopping condition, etc. Details on how to determine the SA
parameters for DNN selection are provided in the appendix of
the full version of the paper [37].

D. DNN Update

Once the set of DNNs is selected for the current clients, the
DNNs must be loaded onto the workers. However, loading a
DNN on a GPU can incur a considerable time overhead due to
the launching of CUDA kernels, transfer of DNN parameters,
etc. To mitigate this issue, we prefetch DNNs on GPUs. More
specifically, we employ a prefetching technique based on the
nearest-neighbor policy where we pre-load DNNs neighboring
the currently loaded one. When a new set of DNNs is selected,
we order and match the new set to the old set such that the
distance between the enumerated DNNs is minimized, so as to
benefit most from prefetching. This problem is similar to the
well-known stable marriage problem, and we solve it by sorting
the old and new sets in decreasing order of the DNN size. We
then assign the workers running DNNs from the previous set
to the new DNNs in an element-by-element fashion.

V. IMPLEMENTATION

We implement a Jellyfish system prototype (around 4K
lines of Python code) using the Pytorch framework for DNN
inference on GPUs. We also provide simulation scripts to test
the performance of our scheduling algorithms for different
DNNs, clients, and GPU configurations. The source code is
publicly available at: https://github.com/vuhpdc/jellyfish.

Hardware setup. We carry out parts of our experiments on
a server equipped with an Intel Core i9-10980XE CPU (36
cores), 128GB DRAM, and two GPUs (NVIDIA RTX2080Ti),
running Ubuntu 18.04. We then use another server equipped
with an Intel Core i7-8700K CPU (12 cores) and 32GB DRAM
to emulate multiple clients, ensuring that compute, memory,
and network bandwidth are not the bottleneck. The original
bandwidth between these two servers is 1Gbps. We use the
Linux tc utility to control clients’ bandwidth and replay real-
world network traces. For large-scale experiments, we use AWS
instances to deploy the clients and GPU workers (see §VI-E).

Software details. We expose Jellyfish service APIs through
standard gRPC calls and use a bidirectional stream mechanism
to handle continuous request-response client streams. Currently,
the dispatcher module includes a multi-threaded gRPC server.
The scheduler module runs in a separate process at a periodic
interval of half a second unless specified explicitly. Each worker
runs two processes: one to receive requests and load DNNs and
the other as a DNN executor running with the highest priority.
The communication between processes on the same machine is
done through Python SimpleQueue (i.e., a Pipe) and PyZMQ
over TCP on the distributed server. For stable and deterministic
performance, we disable NVIDIA’s cuDNN optimisations and
control randomness with manual seed values [38]. For frame
(image) compression, we use a JPEG encoding scheme with a
high compression level to trade a slight degradation in analytics
accuracy for speed. Furthermore, we hold all DNNs in the
DNN zoo in memory to avoid disk IO overhead.

Placement of system components. On a stand-alone, multi-
GPU server, the dispatcher, scheduler, and each worker run
in their own processes on the same machine. Therefore, the
server should have sufficient download network bandwidth,

12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

DNN Input Size

0.2

0.3

0.4

0.5

0.6

m
AP

Accuracy

1 2 3 4 5 6 7 8
Batch Size

100

200

300

P9
9

La
te

nc
y

(m
s)

Latency

1 2 3 4 5 6 7 8
Batch Size

50

100

150

Fr
am

es
 P

er
 S

ec
on

d Throughput

DNN_128
DNN_160
DNN_192

DNN_224
DNN_256
DNN_288

DNN_320
DNN_352
DNN_384

DNN_416
DNN_448
DNN_480

DNN_512
DNN_544
DNN_576

DNN_608
DNN_640

Fig. 6: The DNN performance profiles.

enough CPU cores to run each process on dedicated cores,
sufficient DRAM to hold the DNN zoo and store incoming
requests (aggregate of all clients). On distributed servers, the
dispatcher and scheduler processes run on a front-end machine,
whereas workers run on separate machines where GPUs are
installed. The front-end machine should be a powerful server to
handle connections from multiple clients. The network between
front-end and worker machines should not be a bottleneck and
should have predictable dispatch latency.

Bandwidth estimation. We implement a separate acknowl-
edge mechanism for inference requests so that clients can
estimate their network bandwidth per request by measuring
the request input data size and the smoothed round-trip latency.
The scheduler then uses the harmonic mean (following prior
work [32]) of the client’s bandwidth over the past one second
as the estimated bandwidth for the client.

VI. PERFORMANCE EVALUATION

We perform extensive experiments for real-world scenarios
using object detection inference tasks. We demonstrate the
effectiveness of Jellyfish by answering the following questions:
Q1 Can Jellyfish fulfill its goal under variable network condi-

tions and diverse client characteristics?
Q2 How well does Jellyfish perform compared with other

DNN inference scheduling algorithms?
Q3 How well does Jellyfish perform on large-scale setups?

A. Methodology

DNN zoo. We employ a well-known pre-trained YOLOv4
DNN architecture [7] and use its Pytorch-YOLOv4 implemen-
tation [39] for the object detection task. Importantly, YOLOv4
supports different DNN input (frame) sizes by resizing the
network configuration and using the same weight parameters
across all resized networks. We choose 17 different DNN
configurations whose input sizes (in both dimensions) range
from 128 to 640 with a step size of 32, indexed from 0 to 16.
We discard the DNN of size 640 as it has lower accuracy than
size 608, but has higher latency for execution.

DNN profiles. We profile the DNNs (accuracy and latency)
using the COCO-val2017 image dataset [40] and use the
standard comparison metric called mean average precision
(mAP) to rank the DNNs. Fig. 6 shows the DNN profiles used
in the evaluation. From the throughput profile, we see that for
the majority of the DNNs, the curve starts plateauing at around
batch size 8. Furthermore, we use the 99th-percentile (P99)

0
4
8

12
16

D
N

N
 In

de
x

Client 0 Client 1

0 1000 2000 3000 4000
Frame Index

0

10

20

BW
 (M

bp
s)

0 1000 2000 3000 4000 5000
Frame Index

BW Limit
Estimated BW

Fig. 7: DNN selection for each client in a setting (two clients, 25 FPS, 100ms
SLO) under a synthetic network trace. Red dots indicate dropped frames.

latency profile to keep SLO violations low. Unlike the average
latency profile, the P99 latency profile curve may not follow
the non-decreasing trend (as required in our algorithms) due
to high tail variations. Thus, our latency estimator adjusts the
values by conservatively allocating the higher latency values
of smaller DNNs to larger DNNs.

Video datasets. We evaluate our system on the vehicle
detection task on highways identifying classes such as “cars”,
“buses”, “motorbikes”, and “trucks”. Like in DDS [26], we
pick three publicly available 10min traffic videos (around 9K
frames each) at 720p resolution. We extract and replay video
frames at different frame rates to generate requests for clients.

Evaluation metrics. We evaluate the system using the
following performance metrics:
• Miss rate: The miss rate describes the fraction of frames

that have missed their SLOs or have been dropped early in
the pipeline due to SLO violations.

• Analytics accuracy: We use the F1 score (a harmonic mean
of precision and recall) with IoU (intersection over union) of
0.5 as a metric to quantify analytics accuracy. We exclude
missed frames as it is hard to quantify their impact on the
user application. Similar to DeepDecision [24] and DDS [26],
we use the detection results of the DNN whose input size is
equal to that of the original video as ground truth.

• Worker Utilization: The worker utilization is the fraction of
the total time during which workers are busy executing the
DNN inferences on GPUs.

B. End-to-End Performance

We first analyze the end-to-end performance of Jellyfish
under a synthetic network trace. Following AWStream [23],
we periodically set each client’s bandwidth to a value from the
ordered set {20, 15, 10, 7.5}Mbps and keep each value for 20
seconds. We test with {1, 2, 4, 8} concurrent clients and draw
their SLOs from the set of {75, 100, 150} milliseconds (ms)
and request rates from the set of {15, 25} FPS. The smallest
DNN in the DNN zoo has P99 latency of 23ms for batch size 1.
Thus, we have a lower limit of 75ms (instead of 50ms) in the
SLOs set for each client because the minimum time budget for
computing on the server must be 46ms (twice the latency of the
smallest DNN, see Eq. (5)). Next, we start clients sequentially
with a small random wait (in [1, 10]s) between two clients,
mimicking random client arrivals/departures and creating a

0.0
0.2
0.4
0.6
0.8
1.0

M
is

s
R

at
e

(%
) 15.427

75ms SLO

1.153

100ms SLO 150ms SLO

15 FPS
25 FPS

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 (F
1

Sc
or

e)

Smallest DNN accuracy 15 FPS
25 FPS

1 2 4 8
Number of Clients

0.0
0.2
0.4
0.6
0.8
1.0

U
til

iz
at

io
n

R
at

io

1 2 4 8
Number of Clients

1 2 4 8
Number of Clients

15 FPS
25 FPS

Fig. 8: The miss rate, accuracy and worker utilization of Jellyfish for varying
SLOs, request rates, and numbers of clients under a synthetic network trace.

random requests arrival pattern. The clients replay the same
network trace but start from random points to avoid a lock-
step behavior. We run each experiment for three iterations and
report the mean value. Note that mostly two parallel DNNs are
selected on two GPUs for serving clients at any given moment.

DNN adaptation. Fig. 7(bottom) depicts the estimated band-
width values close to the actual bandwidth limits, displaying the
accuracy of our bandwidth estimation. Fig. 7(top) illustrates
DNN selection decisions for each client in a setting with
two clients. It shows that larger DNNs are selected when the
bandwidth is higher and vice-versa, implying DNN adaptation.

Miss rate. Fig. 8(top) shows that the overall miss rate is less
than 1% for almost all settings. We make three observations:
(a) The miss rate for settings with 150ms SLO is the lowest due
to the high compute time budget available on the edge server.
(b) The miss rate is relatively high (1.153%) for the setting
with 100ms SLO, 15 FPS, and 8 clients. Here, the scheduler
often selects two DNNs: a small one with a moderate batch
size (e.g., DNN index 3 with batch size 3, throughput around
90 FPS) and a large one with a small batch size (e.g., DNN
index 9 with batch size 1, throughput around 32 FPS). Hence,
many clients (e.g., around 6 with an aggregate request rate of
90 FPS) are served by the small DNN. Thus, the small DNN is
heavily loaded and the requests served by this DNN are more
sensitive to the micro-bursts of requests created by nonuniform
request arrival. (c) The miss rate is unacceptable (15.427%)
for the setting with 75ms SLO, 25 FPS, and 8 clients, which
represents an overloaded situation. To support the aggregate
request rate of 200 FPS of 8 clients with 75ms SLO, the
scheduler must select the smallest DNN on each GPU with
batch size 4 (the DNN latency and throughput being 32ms and
124 FPS, respectively). That means the clients require a time
budget of at least 64ms for computing, which is impossible
when the client’s bandwidth is low (i.e., 7.5Mbps). Thus, the
scheduler often selects the batch size of 4 and 3 on each GPU,
with the total inference throughput being slightly lower than
the aggregate request rate, leaving one client unmapped to any

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F
(1

5
FP

S)

P99

75ms SLO 100ms SLO 150ms SLO

0 25 50 75
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F
(2

5
FP

S)

0 33 66 100
Latency (ms)

0 50 100 150
Latency (ms)

#Clients
2
4
8

Fig. 9: End-to-end latency CDF for varying SLOs, request rates, and numbers
of clients under a synthetic network trace.

of the DNNs. Overall, Jellyfish delivers an extremely low miss
rate (≤ 1%) when the system is not overloaded.

Analytics accuracy. Fig. 8(middle) shows the accuracy of
all settings. The settings with one or two clients have similar
accuracy since requests are served with similar DNNs. The
accuracy decreases when the aggregate request rate increases.
Here, the aggregate request rate can increase when the number
of clients or their frame rate increases. In this case, the
scheduler has to lower the DNNs sizes to support the higher
request rates. However, with larger SLOs, the scheduler can
select larger DNNs when possible. Consequently, the accuracy
at 150ms SLO for all settings is higher than that at 100ms or
75ms SLOs. Overall, for all settings, the accuracy achieved
by Jellyfish is much higher than that achieved by the smallest
DNN (i.e., the DNN likely to be deployed directly on client
devices), demonstrating the benefits of offloading inference
tasks to the edge server, albeit dynamic networks.

Worker utilization. Fig. 8(bottom) shows the aggregate
worker utilization ratio. The utilization is lower for settings
with fewer clients and lower FPS due to lower aggregate request
rates and larger arrival times between requests. Once the system
becomes more saturated with more clients and higher SLOs,
the utilization increases (up to 75%) because Jellyfish tends
to select larger batch sizes and DNNs, thus increasing the
compute usage. The experiment confirms that Jellyfish’s low
miss rates are not at the cost of reduced worker utilization.

End-to-end latency. Fig. 9 shows the end-to-end latency
CDF for all settings except for a setting with 1 client, which
performs similarly to the setting with 2 clients. We see that the
median latency increases for all clients when the SLO increases
as the scheduler selects larger DNNs. For example, the median
latency is 53.77ms with two clients, 15 FPS, and 100ms SLO,
whereas it is 84.62ms with 15 FPS and 150ms SLO. Although
the median latency is much lower (queuing time is assumed
equal to the DNN inference time), the P99 latency is close to
the SLO, especially for settings with many clients where the
queuing time is high. This confirms the importance of using
higher (e.g., P99) DNN latency profiles and the assumption of
worst-case queuing time for low miss rates.

In a nutshell, Jellyfish can fulfill the goal of delivering
low miss rates while maintaining high accuracy (Q1).

C. Comparison with the Baselines

Baseline. Inspired by Clockwork [11], we implement a
fine-grained baseline scheduler based on the earliest deadline

0
4
8

12
16

D
N

N
 In

de
x

WiFi Trace

0
4
8

12
16

LTE Trace

0 1000 2000 3000 4000
Frame Index

0

50

100

BW
 (M

bp
s)

BW Limit
Estimated BW

0 1000 2000 3000 4000 5000
Frame Index

0

15

30

Fig. 10: Illustration of DNN adaptation for a client in a setting (2 clients, 25
FPS, 100ms SLO) with WiFi and LTE traces. Red dots mark dropped frames.

first (EDF) policy. The idea is to deploy a static DNN on
all GPUs and schedule requests with the earliest deadline
without preemption on the next available GPU worker. Similar
to Clockwork, for batching requests adaptively, we maintain a
global priority queue per batch size where new requests are
added to every batch queue. The priority of a request in a
batch queue is determined by the earliest time to schedule the
request at the respective batch size. We then schedule requests
from each batch queue with a sufficient number of requests by
iterating through batch queues in the decreasing order of batch
size. The requests are dropped from the particular batch queue
when the time budget is insufficient for DNN execution. Here,
the system design and implementation are similar to our setup
except for the scheduling logic, as we focus our comparison
on scheduling algorithms. More importantly, our network time
estimation helps to compute the variable network time and the
variable compute time budget per request on the server, which
is then used as a deadline for the EDF policy.

Further, we enable data adaptation on clients. The adaptation
policy picks the maximum possible frame resolution below the
input size of the chosen DNN to maintain a stable network
throughput. This policy is similar to AWStream [23] (for the
frame resolution) and offers optimal adaptation because the
DNN accuracy is a monotonic function of the frame resolution
(see Fig. 6).

We compare Jellyfish with three variants of the baseline by
deploying the lowest (B L), middle (B M), and highest (B H)
DNNs in terms of accuracy (also size). Similar to §VI-B, we
test around 18 experimental settings with a combination of {2,
4, 8} concurrent clients, {75, 100, 150}ms SLO and {15, 25}
FPS. Along with a synthetic network trace, we also compare the
performance on two real-world network traces: a WiFi network
trace and a 4G/LTE downlink bandwidth trace [41] downscaled
by a factor of two to represent the uplink bandwidth [13].
Fig. 10(bottom) shows the estimated and actual bandwidth
values. Fig. 10(top) shows the DNN selection decisions for
one client under the two real-world network traces, indicating
that Jellyfish adapts quickly to bandwidth changes.

Results and discussion. Fig. 11 shows the performance of
Jellyfish against the baselines under three different network
traces. Jellyfish consistently has the overall miss rates below
1% for the synthetic and WiFi trace and below 1.5% for the
LTE trace except for one setting (75ms SLO, 25 FPS, and 8

0 50 100
Miss Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (F
1

Sc
or

e)

Points overlapped
for B_L

Synthetic Trace

0 50 100
Miss Rate (%)

1%

LTE Trace

0 50 100
Miss Rate (%)

1%

WiFi Trace

B_L
B_M
B_H
Jellyfish

Fig. 11: Comparison of Jellyfish with baselines. B M and B H have excessive
SLO violations making them ineffective, while B L suffers from low accuracy.

clients) where at least one client cannot be mapped to any DNN
(explained in §VI-B). Jellyfish achieves decent accuracy for
settings with large SLOs and low aggregate request rates under
the WiFi trace, on par with B H. This is because the bandwidth
values are generally high (median value 53.1Mbps) under WiFi,
leaving a large compute time budget on the server. For B L, the
network is never a bottleneck because the smallest frame size,
128 × 128 at 25 FPS, needs only 2Mbps bandwidth. Besides,
two B L instances can support the aggregate request rate in
all settings. Thus, the miss rates for B L are negligible but
at the cost of the lowest accuracy. B H is the worst in terms
of inference throughput and bandwidth requirement (26Mbps).
Hence, B H has the highest miss rate for almost all settings.

B M has better performance than other baselines but fails to
provide consistency like Jellyfish does for all settings. B M has
high miss rates in the following two cases: (a) Low SLOs and
low request rates: Clients need around 7Mbps to send frames
at the desired size (354×354) and 15 FPS. Clients do not face
any network bottleneck, especially under synthetic and WiFi
traces, and thus can always send frames at the desired size. Yet,
sending at the desired frame size results in significant network
time (up to 60ms), leaving a very small compute time budget
on the server, especially when the bandwidth drops below
10Mbps. Hence, the miss rates are around 40%, indicating the
necessity of aligning the data and DNN adaptation decisions.
On the other hand, clients sending at 25 FPS need about
11Mbps, and therefore, clients would lower frame sizes (data
adaptation) to maintain stable network throughput. Due to
the data adaptation, the network time is significantly reduced,
leaving enough compute time budget on the server for the
inference. (b) High aggregate request rates: The scheduler
has to increase the batch size to support many clients (or their
high aggregate frame rates), but at increased compute time,
which hurts settings without sufficient SLOs. Therefore, B M
has high miss rates for 4 and 8 clients with SLOs under 150ms.

Furthermore, as we consider the F1 score of only the
processed requests, the accuracy of B M and B H is higher
than Jellyfish in some settings but at the cost of extremely high
miss rates. Note that the gap in accuracy between Jellyfish and
baselines B M and B H decreases when the SLO increases as
the scheduler tends to select larger DNNs.

Heterogeneous clients. We also experiment with heteroge-
neous clients, i.e., clients with varying combinations of request
rates (FPS) and SLOs in one setting. Under the LTE trace,
the baseline B M has a miss rate of 11.78% for 4 clients and

10
0

10
2

Miss Rate (%)

0.0

0.5

1.0

Ac
cu

ra
cy

 (F
1

Sc
or

e)

1%

75ms SLO

10
1

10
0

10
1

Miss Rate (%)

1%

100ms SLO

10
1

10
1

Miss Rate (%)

1%

150ms SLO

Jellyfish
DAoff

DAbw CB75%
DAbw CB50%

DAslo CB75%
DAslo CB50%

Fig. 12: The impact of the three data adaptation strategies on Jellyfish’s
performance under a synthetic network trace. The label DA means data
adaptation, and CBx% means x% of SLO allocated as a compute time budget.
The x-axis is in log scale.

31.94% for 8 clients. In contrast, Jellyfish has a miss rate of
0.95% for 4 clients and 1.62% for 8 clients, in line with the
results in Fig. 11 for homogeneous clients. Similar results hold
for the synthetic and WiFi network traces (see Appendix C in
the full version [37]).

In summary, Jellyfish consistently outperforms baselines
in terms of miss rates and maximizes the accuracy when-
ever a larger compute time budget is available (Q2).

D. Performance of Joint Adaptation

In §VI-C, we see that the miss rates are significantly higher
for the baselines that do not perform DNN adaptation, even
when using data adaptation. We now investigate the impact
of joint adaptation, i.e., the combination of data and DNN
adaptation. To this end, we enable or disable the two system
adaptation components independently and analyze the impact
of each combination on the overall Jellyfish performance. For
the data adaptation, we further consider three scenarios for
which we provide modified implementations:
• No data adaptation (DAoff), i.e., simply streaming data from

clients at a predefined fixed size. Specifically, we choose
the input size of the middle DNN, i.e., 354 × 354, which
provides a good trade-off between bandwidth requirement
and accuracy. Here, the scheduler knows the data size and
treats it as a constant during DNN adaptation.

• Default data adaptation (DAbw) with typical network band-
width awareness to maintain stable network throughput [23].
Here, the current network condition is considered but
no knowledge about the DNN adaptation component is
provided. In this scenario, we have to statically allocate
some percentage of the end-to-end SLO as a compute time
budget for the DNN adaptation. For our experiments, we
choose 50% and 75% heuristically. We cannot allocate 25%
of SLO as a compute time budget because no DNNs are
feasible to execute for the 75ms and 100ms SLO settings.

• SLO-aware data adaptation (DAslo) that optimizes the data
adaptation strategy to also consider the network time budget.
Here, the data adaptation is aware that a part of the end-to-end
SLO has been statically allocated for the DNN adaptation.
Hence, it attempts to deliver the data to the server in the
remaining time to achieve low miss rates considering the
network time budget in addition to the current network
bandwidth.

8 16 24 32
Number of Clients

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
is

s
R

at
e

(%
)

100ms SLO
150ms SLO

Fig. 13: The miss rate on 8 GPUs for varying numbers of clients operating at
15 FPS with the dynamic LTE trace.

Similar to §VI-B, we use 18 experimental settings on synthetic
network trace for performance comparison.

Results and discussion. We show the results in Fig. 12. (a)
For no data adaptation (DAoff), the miss rates are extremely
high in almost all settings as expected. (b) For default data
adaptation (DAbw), the miss rates are lower than DAoff for
settings with higher SLOs. However, compared to Jellyfish,
DAbw still has higher miss rates and lower accuracy, especially
for settings with lower SLOs (75ms and 100ms). Note that
when the compute time budget is 50% of the SLO, no DNN is
selected for the 75ms SLO which results in a 100% miss rate.
(c) For SLO-aware data adaptation (DAslo), the miss rates are
comparable to Jellyfish, but the accuracy is significantly lower
for a compute time budget of 50% of the end-to-end SLO
(CB50%). The accuracy of DAslo is on par with Jellyfish for a
compute time budget of 75% of the SLO (CB75%). In the case of
DAslo and CB75%, the frames are streamed at a lower resolution
(due to a low network time budget) and upscaled on the server
for serving with bigger DNNs. While the task we consider in
the experiments (vehicle detection) is not obviously sensitive
to quality degradation from frame upscaling, that behaviour
may not hold for other tasks (e.g., semantic segmentation),
DNN architectures, and data content [25]. Furthermore, the
accuracy depends on the manual selection of a static budget
allocation (50% or 75%) between data and DNN adaptation,
and the optimal value can be hard to decide in practice.
Jellyfish automatically and dynamically allocates the time
budget between data and DNN adaptation.

In summary, joint adaptation is crucial for achieving low miss
rates with optimal accuracy—Jellyfish’s dynamic allocation
of time budget between data and DNN adaptation and
alignment of adaptation decisions allow for a consistently
high performance without manual system configurations.

E. Large-Scale Setup

We also evaluate Jellyfish on a large-scale distributed
cloud setup. Specifically, we run the dispatcher on an AWS
compute instance c5.9xlarge, 8 workers on 8 g4dn.2xlarge
instances equipped with T4 NVIDIA GPUs and 8 t3.2xlarge
instances to emulate up to 32 clients. Here, we test Jellyfish
with varying numbers of clients for {100, 150}ms SLOs and
15 FPS on the LTE trace. We choose an FPS of 15 to support
a large number of clients without introducing a throughput
bottleneck on the server and to offer enough leeway for DNN
adaptation. The latency profile patterns remain proportional
to the one in Fig. 6. We use only the smallest ten DNNs
since larger DNNs have much lower throughput, making them
inefficient in this setup. Note that T4 GPUs have a low power

4 6 8 10 4 6 8 10
Clients Scale Factor

0.0

0.5

1.0

Ap
pr

ox
im

at
io

n
R

at
io

2 GPUs 4 GPUs

(a) Approximation ratio (mean)

4 6 8 10
Clients Scale Factor

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

 2 GPUs
 4 GPUs

 8 GPUs
16 GPUs

(b) Execution time in log scale

Fig. 14: Performance of Jellyfish scheduler for varying #GPUs and #clients.
Here, the #clients is a product of Clients Scale Factor (x-axis) and #GPUs.

limit of 70W. Therefore, even after fixing the clock values,
power throttling leads to rather unstable inference timings,
which can negatively affect the performance of Jellyfish.

Fig. 13 shows that the miss rates are less than 1.73% for
an SLO of 150ms and 3% for 100ms. For 100ms SLO and 32
clients, the scheduler selects relatively smaller DNNs than 24
clients to support the aggregate request rate (480 FPS). The
scheduler may then assign many clients to the smaller DNNs.
As mentioned in §VI-B, many clients assigned to the same
DNN might distort the uniformity of the request arrival pattern
and thus lead to increased request misses when the inference
timings are unstable. However, the miss rate improves with the
increase of the SLO (e.g., 150ms), due to increased compute
time budget that can mask the unstable timings. We observe
no particular trend in the miss rate when the number of clients
increases as the miss rate depends on the complex dynamics of
client characteristics and DNN performance profiles. Overall,
Jellyfish achieves miss rates within the acceptable range
(1− 3%), even on a large-scale setup (Q3).

F. Scheduler Performance
We evaluate the Jellyfish scheduler performance through

simulations, comparing it with the optimal MILP algorithm.
We run the algorithms with multiple settings spanning {2, 4, 8,
16} GPUs and the number of clients with a factor of {4, 6, 8,
10} times the number of GPUs. Each client randomly draws
its request rate from {10, 15, 25} and SLO from {75, 100,
150}ms and its bandwidth is chosen uniformly at random from
the interval [7.5, 50) Mbps. We use the same DNN profiles
as depicted in Fig. 6. We run around 100 problem instances
for each setting. The solution quality of each algorithm is
measured by the accuracy objective defined in Eq. 1. We then
use the approximation ratio between our algorithm and the
MILP algorithm as a comparative metric.

Approximation ratio. Fig. 14a shows the mean approxi-
mation ratio for 2 and 4 GPUs. The MILP algorithm could
not return enough optimal solutions for settings with {8, 16}
GPUs and 40 clients on 4 GPUs, even after specifying the
time limit of 30 minutes for each problem instance. It can be
observed that our scheduling algorithm is near-optimal, with
an approximation ratio ranging from 0.966 to 0.996.

Execution time. As depicted in Fig. 14b, our naive Python
implementation of the Jellyfish scheduler has a sub-second
execution time for up to 8 GPUs and clients scale factor of 6.
With the increase of the GPUs and the clients scale factor, the

execution time increases almost linearly. Overall, it is practical
to run our scheduler at a high frequency for handling high
network dynamics in typical edge scenarios.

G. DNN Prefetching Performance

We also analyze the effectiveness of the DNN prefetching
strategy. We consider the same settings under the two
real-world network traces, where DNNs must be adapted more
often to handle frequently changing bandwidth. In this case,
the DNN hit ratio is around 92.37% when five DNNs (out
of 16) and 83.61% when only three DNNs are prefetched at
a time. On our setup, such a hit ratio translates to a maximum
gain of 3% in processing requests precisely with the newly
selected DNN. The gain is not high due to the minimal cost of
moving DNNs on our GPU setup (150-200ms). However, we
anticipate the gain to be substantial for large state-of-the-art
DNNs. The high hit ratio confirms the effectiveness of the
nearest-neighbor prefetching and our DNN update method.

VII. RELATED WORK

Adaptive video analytics systems. Recent works such as
VideoStorm [42], AWStream [23], Chameleon [43], DeepDeci-
sion [24], JCAB [34], DDS [26], and SPINN [30] have pro-
posed adaptive solutions for networked video analytics. Their
main goal is to schedule bandwidth efficiently or save energy
by means of trading accuracy for resource efficiency. However,
meeting latency SLOs in an end-to-end fashion has not been
the main goal or even considered. Data adaptation is applied
in DeepDecision and JCAB, with theoretical frameworks for
adapting input video configurations (such as frame resolution
and rate). Although JCAB considers a multi-client scenario
(despite simulation-based evaluation), none of them consider
the multi-client, multi-GPU serving scenario for a holistic DNN
adaptation. The problem of resource allocation and workload
partitioning between multiple clients (smart cameras) and an
edge cluster in video surveillance systems has been addressed
by Distream [44]. Unlike Jellyfish, however, Distream does not
account for variable edge network conditions and millisecond-
level SLOs, thus limiting its applicability for the highly dynamic
scenarios we consider in this paper.

Inference serving systems. Clipper [9] provides an easy-to-
use abstraction layer for low-level deep learning frameworks.
Nexus [10] aims to optimize serving throughput without SLO vi-
olations. Clockwork [11] leverages the predictable performance
of the DNNs, considers the SLO guarantees on the server, and
maps requests to the desired model, but does not utilize DNN
adaptation. Inferline [45], Llama [46], and FA2 [47] optimize
the serving of complex DNN pipelines. INFaas [12] automates
the hardware and model-variant selection and deployment
through managed services. Model-Switching [33] proposes
to scale DNNs (up and down) instead of scaling resources in
the case of fluctuating workload. None of these cloud-based
solutions consider the impact of the dynamic edge network on
the end-to-end latency. These serving systems do not consider
the client conditions and perform client data adaptation to
reduce network transmission time and effectively increase the

compute time budget on the server-side. Further, since many of
these serving systems are designed for different objectives (e.g.,
resource optimization), it is non-trivial to incorporate network
variation, data/DNN adaptation dependencies, and collective
adaptation in them without fundamental changes.

While enterprise-grade serving systems such as TensorFlow
Serving [48], Torch Serve [49], and Triton Inference Server [50]
support best-effort inference batching, they do not have latency
guarantees as a first-class service feature, let alone considering
client network conditions. Integrating our scheduler logic
into these systems is an interesting direction for future work.
Jellyfish bridges the gap between adaptive video analytics
systems and inference serving systems.

Joint adaptation. Recent works have also argued for joint
data and DNN adaptation. However, they either focus on a
single-client setup [27] or optimize resources with relatively
lenient latency constraints (i.e., 1–5s) [28]. In contrast, Jellyfish
maximizes inference accuracy with millisecond-level latency
SLO targets given a highly dynamic network.

VIII. DISCUSSION AND LIMITATIONS

Request rate adaptation. Similar to Chameleon [43] and
DeepDecision [24], Jellyfish does not adapt the request (frame)
rate and we consider it as future work. The plan is to decouple
the request rate adaptation decision from the server-side
scheduling and leave the decision up to the client. Such an
approach may help with Jellyfish scalability.

Predictability. Generally, we assume that DNN inference
latency is predictable and invariably remains stable. Yet, in
practice, especially on commodity hardware and software, it is
hard to maintain stable performance without having a detailed
understanding of the system’s internals. We expect the service
providers to tune the system in favor of stability than speed.

Latency budget estimation. Our latency (compute) budget
estimation currently depends on predicting accurately the
client’s bandwidth and the data size of the video frames. With
image encoding such as JPEG and PNG, the compressed size
depends on the changing content of the image, which affects
the estimation of network time. We plan to explore the more
advanced bandwidth estimation techniques and frame/video
compression scheme with a constant compression ratio.

IX. CONCLUSION

Jellyfish is an edge-centric DL inference serving system that
provides soft guarantees for end-to-end latency SLOs specified
over the variable network transmission and DNN inference
time. Jellyfish employs efficient algorithms for client-DNN
mapping and DNN selection, enabling collective system
adaptation by aligning data and DNN adaptation decisions
and coordinating adaptation decisions for multiple clients. Our
evaluation based on a system prototype with real inference
tasks and real-world network traces confirms that Jellyfish
consistently achieves extremely low latency SLO violations
while maintaining high accuracy.

X. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable comments and suggestions. We would also like to
thank Guilherme Henrique Apostolo for proofreading the
paper. This work is part of the Efficient Deep Learning (EDL)
programme (grant number P16-25), financed by the Dutch
Research Council (NWO).

REFERENCES

[1] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in ACM MobiCom, 2019, pp. 25:1–25:16.

[2] M. Braun, A. Mainz, R. Chadowitz, B. Pfleging, and F. Alt, “At your
service: Designing voice assistant personalities to improve automotive
user interfaces,” in ACM CHI, 2019, p. 40.

[3] A. J. B. Ali, Z. S. Hashemifar, and K. Dantu, “Edge-slam: edge-assisted
visual simultaneous localization and mapping,” in ACM MobiSys, 2020,
pp. 325–337.

[4] F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan, “Carmap: Fast
3d feature map updates for automobiles,” in USENIX NSDI, 2020, pp.
1063–1081.

[5] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016, pp. 770–778.

[7] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv, 2020.

[8] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, N. Karianakis,
Y. Shu, K. Hsieh, V. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in USENIX NSDI,
2022.

[9] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,” in
USENIX NSDI, 2017, pp. 613–627.

[10] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: a GPU cluster engine for accelerating
dnn-based video analysis,” in ACM SOSP, 2019, pp. 322–337.

[11] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving dnns like clockwork: Performance predictability
from the bottom up,” in USENIX OSDI, 2020, pp. 443–462.

[12] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in USENIX ATC, 2021, pp.
397–411.

[13] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A
close examination of performance and power characteristics of 4g LTE
networks,” in ACM MobiSys, 2012, pp. 225–238.

[14] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu, and
H. Ma, “Understanding operational 5G: A first measurement study on its
coverage, performance and energy consumption,” in ACM SIGCOMM,
2020, pp. 479–494.

[15] E. H. L. Aarts and J. H. M. Korst, Simulated annealing and Boltzmann
machines - a stochastic approach to combinatorial optimization and
neural computing. Wiley, 1990.

[16] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in AAAI, 2017, pp. 4278–4284.

[17] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. L. Klatzky, D. P. Siewiorek, and M. Satyanarayanan, “An
empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance,” in ACM/IEEE SEC, 2017,
pp. 14:1–14:14.

[18] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. S. Huang, H. Shi, W. W. Hwu, and D. Chen, “SkyNet: a hardware-
efficient method for object detection and tracking on embedded systems,”
in MLSys, 2020.

[19] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on microcon-
trollers,” in MLSys, 2020.

[20] C. Wan, M. H. Santriaji, E. Rogers, H. Hoffmann, M. Maire, and S. Lu,
“ALERT: accurate learning for energy and timeliness,” in USENIX ATC,
2020, pp. 353–369.

[21] S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph strategy
toward real-time DNN inference and training,” in IEEE RTAS, 2020, pp.
15–29.

[22] T. Kannan and H. Hoffmann, “Budget rnns: Multi-capacity neural
networks to improve in-sensor inference under energy budgets,” in IEEE
RTAS, 2021, pp. 143–156.

[23] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: adaptive wide-area streaming analytics,” in ACM SIGCOMM,
2018, pp. 236–252.

[24] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM,
2018, pp. 1421–1429.

[25] D. Dai, Y. Wang, Y. Chen, and L. V. Gool, “Is image super-resolution
helpful for other vision tasks?” in IEEE WACV, 2016, pp. 1–9.

[26] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann,
and J. Jiang, “Server-driven video streaming for deep learning inference,”
in ACM SIGCOMM, 2020, pp. 557–570.

[27] V. Nigade, R. Winder, H. E. Bal, and L. Wang, “Better never than late:
Timely edge video analytics over the air,” in ACM SenSys, 2021, pp.
426–432.

[28] J. Jiang, Z. Luo, C. Hu, Z. He, Z. Wang, S. Xia, and C. Wu, “Joint
model and data adaptation for cloud inference serving,” in IEEE RTSS,
2021, pp. 279–289.

[29] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “MCDNN: an approximation-based execution framework for
deep stream processing under resource constraints,” in ACM MobiSys,
2016, pp. 123–136.

[30] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: synergistic progressive inference of neural networks over device
and cloud,” in ACM MobiCom, 2020, pp. 37:1–37:15.

[31] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All: Train
one network and specialize it for efficient deployment,” in ICLR, 2020.

[32] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach
for dynamic adaptive video streaming over HTTP,” in ACM SIGCOMM,
2015, pp. 325–338.

[33] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-switching:
Dealing with fluctuating workloads in machine-learning-as-a-service
systems,” in USENIX HotCloud, 2020.

[34] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in IEEE INFOCOM, 2020, pp. 257–266.

[35] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“GrandSLAm: Guaranteeing slas for jobs in microservices execution
frameworks,” in ACM EuroSys, 2019, pp. 34:1–34:16.

[36] F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A
survey of multi-tenant deep learning inference on GPU,” arXiv, vol.
abs/2203.09040, 2022.

[37] V. Nigade, P. Bauszat, H. Bal, and L. Wang, “Jellyfish: Timely
inference serving for dynamic edge networks (extended version with ap-
pendix),” https://research.vu.nl/en/publications/jellyfish-timely-inference-
serving-for-dynamic-edge-networks, 2022.

[38] PyTorch, “Reproducibility,” https://pytorch.org/docs/stable/notes/
randomness.html, (Accessed on Jan 31, 2022).

[39] Tianxiaomo, “Pytorch-yolov4,” https://github.com/Tianxiaomo/pytorch-
YOLOv4, 2020.

[40] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in ECCV, vol. 8693, 2014, pp. 740–755.

[41] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Rondao-
Alface, T. Bostoen, and F. D. Turck, “Http/2-based adaptive streaming
of HEVC video over 4g/lte networks,” IEEE Commun. Lett., vol. 20,
no. 11, pp. 2177–2180, 2016.

[42] H. Zhang, G. Ananthanarayanan, P. Bodı́k, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in USENIX NSDI, 2017, pp. 377–392.

[43] J. Jiang, G. Ananthanarayanan, P. Bodı́k, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in ACM SIGCOMM,
2018, pp. 253–266.

[44] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live video
analytics with workload-adaptive distributed edge intelligence,” in ACM
SenSys, 2020, pp. 409–421.

[45] D. Crankshaw, G. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez, and
A. Tumanov, “InferLine: latency-aware provisioning and scaling for
prediction serving pipelines,” in ACM SoCC, 2020, pp. 477–491.

[46] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” arXiv, 2021.

[47] K. Razavi, M. Luthra, B. Koldehofe, M. Mühlhäuser, and L. Wang, “FA2:
Fast, accurate autoscaling for serving deep learning inference with SLA
guarantees,” in IEEE RTAS, 2022, pp. 146–159.

[48] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-

jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ML serving,” 2017.

[49] Pytorch, “TorchServe,” https://pytorch.org/serve/, (Accessed on October
06, 2021).

[50] NVIDIA, “NVIDIA Triton Inference Server,” https://developer.nvidia.
com/nvidia-triton-inference-server, (Accessed on October 06, 2021).

